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Abstract

Important tasks in biomedical discovery such as predicting gene functions, gene–disease associations,
and drug repurposing opportunities are often framed as network edge prediction. The number of
edges connecting to a node, termed degree, can vary greatly across nodes in real biomedical
networks, and the distribution of degrees varies between networks. If degree strongly in�uences edge
prediction, then imbalance or bias in the distribution of degrees could lead to nonspeci�c or
misleading predictions. We introduce a network permutation framework to quantify the e�ects of
node degree on edge prediction. Our framework decomposes performance into the proportions
attributable to degree and the network’s speci�c connections using network permutation to generate
features that depend only on degree. We discover that performance attributable to factors other than
degree is often only a small portion of overall performance. Researchers seeking to predict new or
missing edges in biological networks should use our permutation approach to obtain a baseline for
performance that may be nonspeci�c because of degree. We released our methods as an open-
source Python package (https://github.com/hetio/xswap/).
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Introduction

Networks contain information about relationships between entities (referred to here as “edges”
between “nodes”). A node’s degree is the number of edges it has in the network. Networks contain
many nodes, whose degrees can be aggregated to form the network’s degree distribution. Because
di�erent nodes can have very di�erent degrees, real networks have a variety of degree distributions
(Figure 1), and they commonly exhibit degree imbalance [1,2,3,4]. This is especially true for networks
encoding biomedical knowledge or assays, where natural forces such as preferential attachment
inherent to the problem domain combine with observation-based in�uences such as study
methodology to create nonuniform degree distributions (Figure 1).

https://github.com/hetio/xswap/


Figure 1:  Biomedical networks are characterized by nonuniform degree distributions. Eight degree distributions
are plotted for six edge types Hetionet v1.0 [5]. Hetionet integrates subnetworks for 24 di�erent edge types, the degree
distributions of which are analyzed separately. Furthermore, bipartite (e.g. Anatomy→expresses→Gene) and directed
(e.g. Gene→regulates→Gene) graphs (Hetionet edge types) have both source and target degrees that must be assessed
separately. Undirected edge types (e.g. Compound–resembles–Compound) have only a single degree distribution.
Degree distributions are nonuniform and vary greatly between di�erent networks. The y-axis is log10-scaled to
accommodate the common occurrence where most nodes have low degree while a small portion of nodes have high
degree. Several distributions have nodes that reach the maximum degree, corresponding to a node being connected to
all other possible nodes. Zero-degree nodes are not displayed, since methodological limitations often result in edge data
only existing for a subset of nodes.

Degree is an important metric for di�erentiating between nodes, and it appears in many common
edge prediction features [6]. However, reliance on degree can pose problems for edge prediction.
First, bias in networks can distort node degree so that a di�erence in degree between two nodes in a
given network may not re�ect a true di�erence in number of relationships. Second, edge prediction
methods that rely heavily on degree may be nonspeci�c—predicting trivial rather than insightful new
relationships.

Most biomedical networks are imperfect representations of the true set of relationships. Real
networks often mistakenly include edges that do not exist and exclude edges that do exist. How well a
network represents the true relationships it attempts to represent depends on a number of factors,
especially the methods used to generate the data in the network [7,8,9]. We de�ne “degree bias” as
the type of misrepresentation that occurs when the fraction of incorrectly existent/nonexistent
relationships depends on a node’s degree. Depending on the type of data being represented, degree
biases can arise due to experimental methods, inspection bias, or other factors [7].

Inspection bias indicates that entities are not uniformly studied [10], and it is likely to cause degree
bias when networks are constructed using hypothesis-driven �ndings extracted from the literature, as
newly discovered relationships are not randomly sampled from the set of all true relationships.
Though there is a high correlation between the number of publications mentioning a gene and its
degree in low-throughput interaction networks, the number of publications mentioning a gene has
little correlation with its degree in a systematically derived protein interaction network [11]. This
suggests that many poorly connected genes in nonsystematic protein interaction networks are due to
inspection bias (i.e. a lack of study) rather than a lack of biological function. For networks with a large
inspection bias, reliance on degree can lead to predictions that have good metrics when assessed by
cross-validation but little ability to generalize.

Another reason why a reliance on degree can be unfavorable is that degree imbalance can lead to
prediction nonspeci�city. Nonspeci�c predictions are not made on the basis of the speci�c
connectivity information contained in a network. For example, Gillis and Pavlidis examined the
concept of prediction speci�city in the context of gene function prediction and found that many
predictions appear to rely primarily on multifunctionality and could be “potentially misleading with
respect to causality” [12]. Degree imbalance leads high-degree nodes to dominate in the predictions
made by degree-associated methods [13], which are e�ective predictors of connections in some
biological networks [14]. Consequently, degree-based predictions are more likely nonspeci�c,
meaning the same set of predictions performs well for di�erent tasks.

Depending on the prediction task, edge predictions involving very high-degree nodes may be
undesired, uninsightful, or nonspeci�c. While predictions based primarily on degree may be
acceptable for some tasks, generating less obvious insights from networks requires drawing
inferences from the speci�c connections and network structure between nodes. Model evaluation is
challenging in this context: nonspeci�c or trivial predictions can dominate performance evaluations
and may actually be correct, even if they are not the desired outputs of the predictive model. For
example, predicting that the highest degree node in a network shares edges with the remaining nodes



to which it is not connected will often lead to many correct predictions, despite this prediction being
generic to all other nodes in the network.

Degree is important in edge prediction, but it can cause undesired e�ects. Degree-based features
should often be included in the interpretation of predictions to disentangle desired from undesired
e�ects and to e�ectively evaluate and compare predictive models. We sought to directly measure the
e�ect of node degree on edge prediction methods. To do so, we developed a network permutation
approach that allows any edge prediction method to be compared to an empirical baseline
distribution. This method allows edge predictions to be evaluated in the context of degree and its
e�ects on the prediction task. Our results demonstrate that degree-associated methods are very
e�ective for reconstructing a network using a subsampled holdout. However, these methods are
ine�ective for predicting edges between networks measuring the same biological processes in
targeted and systematic ways because such networks have distinct degree distributions. Using
multiple di�erent networks, we provide evidence that degree has a strong e�ect on the probability of
edge existence and that our permutation-based edge prior best quanti�es this probability.

Methods

Network permutation

Network permutation is a way to produce new networks by randomizing the connections of an
existing network. Specialized permutation strategies can be devised that randomize some aspects of
networks while retaining other features. Comparing between permuted and unpermuted networks
gives insight to the e�ects of the retained network features. For example, an edge prediction method
that has superior reconstruction performance on a network compared to its permutations likely relies
on information that is eliminated by permutation. Conversely, identical predictive performance on
true and permuted networks indicates that a method relies on information that is preserved during
permutation.

Network permutation is a �exible framework for analyzing other methods, because it generates
complete networks that can be analyzed independently. We use network permutation to isolate
degree and determine its e�ects in di�erent contexts. Degree-preserving network permutation
obscures true connections and higher-order connectivity information (e.g., community structure),
while retaining node degree, and, thereby, the network’s degree sequence. Thanks to the �exibility of
permutation, our framework can quantify the e�ect of degree on any network edge prediction
method.

Several degree-preserving network permutation strategies have been developed including XSwap [15],
FANMOD (Fast Network Motif Detection) [16], CoMoFinder (Co-regulatory Motif Finder) [17], DIA-MCIS
(Diaconis Monte Carlo Importance Sampling) [18], and WaRSwap (Weighted and Reverse Swap
Sampling) [19]. IndeCut proposed a method to characterize these strategies by their ability to
uniformly sample from the solution space of all possible degree-preserving permutations [20].

XSwap algorithm

Hanhijärvi et al. presented XSwap [15], an algorithm for the randomization (“permutation”) of
unweighted networks (Figure 2A). The algorithm picks two existing edges at random ({ab, cd}) and—if
the edges constitute a valid swap—exchanges the targets between the edges ({ad, cb}; Table S1). This
process is repeated a user-speci�ed number of times. In general, the number of exchanges should be
chosen to be su�ciently large that the fraction of original edges retained in the permuted network is
near its asymptotic value as the number of exchanges increases to in�nity. The asymptotic fraction of



original edges retained in permutation depends on network density, and higher density networks
require more swap attempts per edge to reach their asymptotic fraction (Figure S1).

We modi�ed the original XSwap algorithm by adding two parameters, allow_loops  (a-a) and 
allow_antiparallel  (a-b and b-a), that allow a greater variety of network types to be permuted

(Figure 2B and Table S1). The motivation for these generalizations is to make the permutation method
applicable to both directed and undirected graphs, as well as to networks with di�erent types of
nodes, variously called multipartite, heterogeneous, or multimodal networks. Speci�cally, in the
modi�ed algorithm, two chosen edges constitute a valid swap if they preserve degree for all four
involved nodes and do not violate the user-speci�ed parameters.

When permuting bipartite networks, our method ensures that each node’s class membership and
within-class degree is preserved. Similarly, heterogeneous networks should be permuted by
considering each edge type as a separate network [21,22]. This way, each node retains its within-edge-
type degree for all edge types. We provide documentation for parameter choices depending on the
type of network being permuted in the GitHub repository (https://github.com/hetio/xswap). The
original algorithm and our proposed modi�cation are given in Figures 2 and 3.

Figure 2:  XSwap algorithm pseudocode. A. XSwap algorithm presented by Hanhijärvi, et al. [15]. B. Extension of the
XSwap algorithm to other types of networks.

https://github.com/hetio/xswap


Figure 3:  Modi�ed XSwap algorithm graphical explanation.

Edge prior

We introduce the edge prior to quantify the probability that two nodes are connected based only on
their degree. The edge prior can be estimated using the fraction of permuted networks in which a
given edge exists. In short, for a given node pair (a, b), given  permutations of the network, and
given that  of these permutations contain (a, b), the prior for (a, b) is , which is also the
maximum likelihood estimate for the binomial distribution success probability. Based only on
permuted networks, the edge prior does not contain any information about the true edges in the
(unpermuted) network. The edge prior is a numerical value that can be computed for every pair of
nodes that could potentially share an edge; we compared its ability to predict edges in three tasks,
discussed in prediction tasks.

Analytical approximation of the edge prior

Because network permutation can be computationally intensive, we also considered whether the
probability of an edge existing across permuted networks has a simple closed-form expression. We
were unable to �nd a closed-form solution giving the edge prior without assuming that the probability
of any given edge existing is independent of all other potential edges, which, in general, is not valid.
Nonetheless, we discovered a good analytical approximation to the edge prior, o�ering much
improvement over a past attempt [23]. The new approximation is particularly good for networks with
many nodes and fewer edges (Figure 4). Further discussion of this approximate edge prior and its
derivation is available in the supplement.

Let  be the total number of edges in the network, and ,  be the source and target degrees of a
node pair, respectively. Our approximation of the edge prior is

N
m m / N

m ui vj



Figure 4:  The XSwap-derived edge prior can be analytically approximated. The analytical approximation is plotted
against the XSwap-derived edge prior for three networks (edge types) from Hetionet. The strong correlation suggests
that the approximation will be suitable for applications where computation time is a limiting factor.

Prediction tasks

We performed three prediction tasks to assess the performance of the edge prior. We compared the
permutation-based prior with two additional predictors: our analytical approximation of the edge
prior and the product of source and target degree, scaled to the range [0, 1] so that we could assess
its calibration as well as its discrimination. We used 20 biomedical networks from the Hetionet
heterogeneous network [5] that had at least 2000 edges for the �rst two tasks (Table S2).

In the �rst task, we computed the degree-based predictors (edge prior, scaled degree product, and
analytical prior approximation) and predicted the original edges in the network by rank-ordering node
pair edge predictions by the node pairs’ predictor values. We used node pairs that lacked an edge in
the original network as negative examples and those with an edge as positive examples. To assess the
methods’ predictive performances, we computed the area under the receiver operating characteristic
(AUROC) curve for all three predictors.

In the second task, we sampled 70% of edges from each of the networks, computed predictors on the
sampled network, and then predicted held-out edges. For this task, negative examples were node
pairs in which an edge did not exist in either original or sampled network, while positive samples were
those node pairs without an edge in the sampled network but with an edge in the original network.

The third task evaluated the ability of the edge prior to generalize to new degree distributions. We
used two domains where networks were available which shared nodes but had di�erent degree
distributions. Protein–protein interactions (PPIs) and transcription factor–target gene (TF-TG)
relationships had networks created both by literature curation of low-throughput, hypothesis-driven
research and by high-throughput, systematic, hypothesis-free experimentation. For the PPI networks,
we used the STRING network, which incorporates literature-mining to �nd relationships [24] and a
combination of the high-throughput, proteome-scale interaction networks from Rual et al. [10] and
Rolland et al. [11]. We used a transcription factor-target gene (TF-TG) literature-derived network from
Han et al. [25] and a high-throughput network from Lachmann et al. [26]. The pairs of networks for PPI
and TF-TG data sources are ideal because in one we expect inspection bias and in the other we do
not.

As a further basis of comparison, we added a time-resolved coauthorship network, which we
partitioned by time to create two separate networks. We created the coauthorship network of bioRxiv

Pi,j = .
uivj

√(uivj)2 + (m − ui − vj + 1)2



bioinformatics preprints using the Rxivist [27,28] database, which was generated by crawling the
bioRxiv server. Unlike the other two networks, coauthorship does not have degree bias, as the
network faithfully represents all true coauthor relationships. We include this network to o�er a
comparative prediction task in which the degree distributions between training (posted before 2018)
and testing (posted during or after 2018) are not dramatically di�erent (Figure 5A). The goal of the
third prediction task is to determine predictor generalizability for network reconstruction between
di�erent degree distributions, especially predicting a network without degree bias using predictors
from a degree-biased network. Further information about the networks used can be found in the
supplement.

Degree grouping

Our method for degree-preserving permutation produces randomized networks that share few of
their edges with the original network. As permutation preserves only node degree, node pairs with
equal degree are equivalent in permutations. For a given node pair, degree grouping treats other
node pairs with the same degrees as additional permutations [29]. We used this strategy to augment
the number of predictor values for each node pair in permuted networks, allowing node pairs to have
more permuted predictor values than permuted networks. Degree grouping greatly increased the
e�ective number of permutations for nodes with frequently observed degrees. We used degree
grouping throughout our analyses.

Implementation and source code

We implemented our modi�ed version of the XSwap algorithm as an open-source Python package.
The package contains modules for permuting networks, computing the edge prior, and converting
networks between adjacency matrix and edge list formats. Additionally, we include the analytical
approximation of the edge prior and functionality to assign unique identi�ers to nodes. The Python
package is available on the Python Packaging Index under the name “xswap”. The full source code is
freely available under the BSD 2-Clause License (https://github.com/hetio/xswap).

The edge swap mechanism—implemented in C++ for greater speed—uses a bitset to avoid producing
edges that violate the conditions for a valid swap. While the full bitset implementation is faster for
smaller networks, our package uses a compressed bitset [30] when a network would occupy memory
above a user-adjustable threshold. In addition to the validity conditions already described, our
package allows speci�c edges to be excluded from permutation, and every network permutation
returns both a permuted network and summary information about the numbers of swaps attempted,
performed, and the reasons why invalid swaps were rejected.

In addition to the Python package, all code to generate the analyses and �gures is available at
https://github.com/greenelab/xswap-analysis. This repository has been deposited to Zenodo along
with large data �les ignored by Git [31]. The manuscript was written using the Manubot software [32],
which allows anyone to provide feedback or modi�cations via the public repository at
https://github.com/greenelab/xswap-manuscript. An archival copy of project repositories is available
in GigaDB [33].

Findings

Node degree bias is prevalent

We found examples of node degree bias in the PPI and TF-TG networks we investigated. Figure 5
shows node degree in separate networks for the same type of data. For the PPI networks, the

https://github.com/greenelab/hetmech/pull/96
https://pypi.org/project/xswap/
https://github.com/hetio/xswap
https://github.com/greenelab/xswap-analysis
https://github.com/greenelab/xswap-manuscript


literature-derived network has a larger mean degree and a longer tail than the systematic network,
while in the TF-TG networks this relationship is reversed. Because the TF-TG network contained far
more transcription factors than target genes (144 and 1406, respectively), the distributions of target
degrees were far more compact than those of source degrees. Unlike the PPI and TF-TG networks, the
coauthorship networks were split by date of �rst coauthorship and did not exhibit a great di�erence
in their degree distributions. All three types of networks (PPI, TF-TG, and coauthorship) exhibit degree
imbalance to varying extents. These results indicate that, depending on the methods by which the
represented data were generated, networks of the same type of data may have overall degree
distributions that di�er greatly (Figure 5A), and they may even assign very di�erent degree to the
same nodes (Figure 5B).

Figure 5:  A. Degree distributions of networks with and without degree bias can be very di�erent. Data on PPI and TF-
TG were split between literature-derived and systematically derived networks. In both cases, the networks exhibit large
di�erences in degree distribution. coauthorship relationship networks split by date of �rst coauthorship roughly share
their degree distributions. B. Comparison of individual node degrees between di�erent networks. Not only are the
overall degree distributions di�erent, but individual nodes can have systematically di�erent degrees between two
networks. Uniform random sampling produces linearly correlated node degree, while nonrandom sampling produces
non-correlated degree. systematically derived networks are not uniformly sampled from literature-derived networks or
vice versa. 70% of literature edges were sampled with uniform probability for the “Subsampled holdout” network.

The edge prior encapsulates degree

We evaluated degree as an edge prediction feature using the edge prior. In the �rst prediction task,
we computed three predictors—the XSwap edge prior, an analytical approximation to the edge prior,
and the (scaled) product of source and target node degree—on networks from Hetionet. We then
evaluated the extent to which these predictors—treated as predictions themselves—could
reconstruct the 20 networks (Table S2). The XSwap-derived edge prior reconstructed many of the
networks with a high level of performance, as measured by the AUROC. Of the 20 individual networks
we extracted from Hetionet, 17 had an edge prior self-reconstruction AUROC >= 0.95, with the highest
reconstruction AUROC at 0.9971 (network was the Compound–downregulates–Gene edge type).
Meanwhile, the lowest self-reconstruction performance (AUROC = 0.7697) occurred in the network
having the fewest node pairs (network was the Disease–localizes–Anatomy edge type).

The three predictors that we compared were highly correlated (Spearman rank correlation over 0.984
for all 20 networks). The three predictors also had very similar AUROC reconstruction performance
values for the �rst, second, and third prediction tasks (max di�erence < 0.027) because AUROC is rank
based. The edge prior was slightly better than the approximations in 12 of 20 networks. However,



while the AUROC results were similar, the predictors were very di�erent in their levels of calibration—
the ability of the model to correctly estimate edge existence probabilities. The edge prior was very
well calibrated for all networks in the �rst and second tasks, and it provided the best calibration of the
three predictors for each of the prediction tasks (Figure 6A). As the edge prior was not based on the
networks’ true edges, these results indicated that degree sequence alone was highly informative and
that permutation was the only approach in our comparison that provided a well-calibrated model.

Figure 6:  The edge prior accurately assigns the probability of edge existence. A. Calibration curves for full network
reconstruction of 20 networks from Hetionet. For every unique predictor value on the horizontal axis, the fraction of
node pairs with that predictor value having an edge in the network is shown on the vertical axis. The permutation-based
edge prior’s calibration was superior to the other two strategies based on degree. B. Calibration curves for sampled
network reconstruction. The edge prior shows superior calibration in the 20 Hetionet networks. C. Individual Hetionet
edge type calibration estimated by the two-component decomposition of the Brier score, in which lower scores indicate
better calibration. The edge prior has excellent calibration in unsampled and sampled networks, and each considered
method is sensitive to shifts in the degree distribution.

The second prediction task mirrored the �rst task, but it involved reconstructing networks based on
subsampled networks with only 70% of the original edges. Because edges were sampled uniformly
without replacement, the subsampled networks share similar degree distributions to the original
networks (see Figure 5B). Unlike in the �rst task, edges that were present in the sampled network
were not tested and therefore are not included in the performance metrics. The results of the second
prediction task further demonstrate a high level of performance for degree-sequence-based node



pair predictors (Figure 7). The edge prior was able to reconstruct the unsampled network with an
AUROC of greater than 0.9 in 14 of 20 networks. As was observed in the �rst task, node pair predictors
computed in the second task were highly rank-correlated, meaning the AUROC values for di�erent
predictors were similar. While performance was slightly lower in the second task than the �rst, many
networks were still well reconstructed. The edge prior was the best calibrated predictor for both tasks.

Figure 7:  Degree can predict edges within a given network but does not generalize to networks with di�erent
degree distributions. The edge prior is able to reconstruct the networks on which it was computed (task 1,
“unsampled”, 20 di�erent networks) with high performance. When computed on a sampled network, the edge prior can
reconstruct the unsampled network with slightly lower performance (task 2, “sampled”, 20 di�erent networks). However,
when computed on a completely di�erent network (having a di�erent degree distribution) of the same type of data, the
edge prior’s performance is greatly reduced (task 3, “separate”, 3 di�erent networks). The performance reduction from
computing predictors on sampled networks is real but far smaller compared to a new degree distribution. This indicates
that while degree can be e�ective for network reconstruction, it is far less e�ective in predicting edges from a di�erent
degree distribution.

In the third prediction task, we computed the three edge predictors for paired networks representing
data from PPI, TF-TG, and bioRxiv bioinformatics preprint coauthorship. The goal of the task was to
compare predictive performance across di�erent degree distributions for the same type of data. We
�nd that the task of predicting systematically derived edges using a network with degree bias is
signi�cantly more challenging than network reconstruction, and we �nd consistently lower
performance compared to the other tasks (Figure 7). The edge prior was not able to predict the
separate PPI network better than by random guessing (AUROC of roughly 0.5). Only slightly better was
its performance in predicting the separate TF-TG network, at an AUROC of 0.59. We �nd superior
performance in predicting the coauthorship relationships (AUROC 0.75), which was expected as the
network being predicted shared roughly the same degree distribution as the network on which the
edge prior was computed. The results of the third prediction task show that a di�erence in degree
distribution between the network on which predictors are computed and the network to be predicted
can make prediction signi�cantly more challenging.

The edge prior can be considered a baseline edge predictor that accurately captures degree’s
contribution to the probability of an edge existing. The edge prior’s low performance in the third task
indicates that degree is less helpful for edge prediction tasks in which training and testing networks
do not share their degree distributions. Many biomedical prediction tasks can be framed as edge
prediction tasks between di�erent degree distributions. In drug repurposing, for example, existing
compound–disease treatment relationships are unlikely to be randomly sampled from all true
treatment relationships. However, all treatment relationships between existing compounds and
diseases are desirable outputs in prediction. Edge predictions can be based on both underlying



biological properties and network degree distributions. However, predictions based on biological
properties may be more consistent and generalizable than those based on degree. Degree’s in�uence
on edge prediction accuracy measures can reveal the relative contributions of these two factors.

Degree can underlie a large fraction of performance

We evaluated the extent to which edge prediction performance is due to degree. To begin, we chose
the STRING PPI network for the comparison and computed �ve edge prediction features (Table S3).
The goal of the task was to reconstruct the network on which the features were computed. All �ve
features were correlated with degree (Figure 8), which we quanti�ed for a node pair using the product
of source and target degrees. We expected features based on degree to show strong performance for
a network reconstruction task without holdout, as found in the �rst prediction task.

Figure 8:  Common edge prediction metrics correlate with node degree. Five common edge prediction features
(Table S3) are correlated with node degree on the STRING PPI network [24]. All �ve features show a positive relationship
with degree, although the magnitude of this correlation is highly variable. The preferential attachment index is
understandably perfectly correlated because it is equal to the product of source and target degree. Each panel indicates
the Pearson correlation (“r”) between feature and degree in the lower right corner.

We used two permutation-derived null values to evaluate reconstruction and contextualize
performance. First, the performance of the edge prior was compared to determine the performance
attributable to the degree sequence of the PPI network. The �rst comparison gave insight into the
ability of the PPI network to be reconstructed by degree. Second, the �ve edge prediction features
were computed on 100 permuted networks and used to reconstruct the unpermuted network. Each
permuted network corresponded to AUROC values quantifying the performances of features
computed on it. The second comparison gave insight into the performance of each feature if the
feature was only capturing degree.

Figure 9:  Identifying the fraction of a metric’s performance resulting from degree alone. Network reconstruction
performances by �ve edge prediction features. Dotted red line indicates performance of the edge prior. Each feature
was computed on both the unpermuted and 100 permutations of the STRING PPI network.



The edge prior encapsulates nonspeci�c predictions due to degree, and it reconstructed the PPI
network with an AUROC of 0.797 (dotted red line in Figure 9). In the second comparison, edge
prediction features computed on permuted networks had performance equal to or lower than their
performances on the unpermuted networks. This indicated that four out of �ve edge prediction
features discern more than node degree for the prediction task. The preferential attachment index is
the product of source and target degree, and its performance did not di�er from the edge prior or the
feature’s performance when computed on permuted networks.

This comparison quanti�ed the performance of degree toward the prediction task and assessed
degree’s e�ect on �ve edge prediction features. The edge prior provided the baseline level of
performance attributable to degree alone. Comparing the performances on permuted networks to
the performance of the edge prior reveals the extent to which a feature measures degree. Features
whose performances on permuted networks were below that of the edge prior only imperfectly
measured degree (e.g. Jaccard index), whereas features whose performances equaled the edge prior
completely captured degree (e.g. preferential attachment index). Features can also capture
information beyond degree, and our method can quantify this performance. For example, the
superior performance on unpermuted networks relative to permuted networks indicated that RWR,
resource allocation, Jaccard, and Adamic/Adar indices captured more than degree in this prediction
task. These results aligned with the de�nitions of each feature and validated that our permutation
framework accurately assessed reliance on degree.

Discussion

We focus on edge prediction in biomedical networks. Our overall goal is to predict new edges with
speci�city, so that predictions re�ect particular connectivity rather than generic node characteristics.
Our permutation framework measures the predictive performance attributable to degree to provide a
baseline expectation for edge pairs. We expect that nonspeci�city due to degree is not a unique
property of biomedical networks. For example, if node A connects to nearly all other nodes in a
network, predicting that all remaining nodes share an edge with node A will likely result in many
correct—though nonspeci�c—predictions, regardless of the type of data contained in the network.
Node degree should be accounted for to make correct predictions while being able to distinguish
speci�c from nonspeci�c predictions. Prediction without reliance on node degree is challenging
because many e�ective methods for edge prediction are correlated with degree (Figure 8).

The e�ects of node degree are obvious when edge prediction features are functions of degree. For
example, the resource allocation index is the sum of the inverse degree of common neighbors
between source and target nodes (in the symmetric case), while preferential attachment is the
product of source and target degree [34,35]. However, because many other edge prediction methods
are not explicitly degree based, it is important to have a general method for comparing the e�ects of
node degree on edge prediction methods.

We developed a permutation framework to quantify the edge probability due to degree. We term this
probability the “edge prior”, and we have identi�ed two applications. First, a probability associated
with every node pair can be treated as a classi�cation score. Ordering these scores provides an
assessment of performance based solely on degree, which can be used as a baseline for other
classi�ers. Second, node pair probabilities can be used to adjust edge prediction features depending
on the task. If degree is a desired feature, then the edge prior can be treated like a Bayesian prior
probability. Alternatively, if degree is not a desired feature, then the edge prior can be used to
calibrate features and thus potentially enhance predictive speci�city.

Figure 9 illustrates the utility of the edge prior and permutation framework for two purposes. First, it
contextualizes feature performances relative to the baseline of nonspeci�c, degree-based predictions,



quanti�ed by the edge prior. Degree has varying utility for di�erent edge prediction tasks. The edge
prior’s performance on a task quanti�es the utility of degree toward the task. This comparison is
useful because speci�c predictions (based on more than degree alone) are more valuable for some
applications than nonspeci�c ones and because degree can be an expression of bias in many real-
world networks.

Second, Figure 9 compares �ve edge prediction features computed on and unpermuted networks.
This comparison identi�ed the fraction of each feature’s performance attributable to degree. Some
features, such as the preferential attachment index, perfectly and exclusively measure degree. The
Adamic/Adar index also almost completely captures degree because its performances from permuted
networks are nearly at the performance of the edge prior. However, the Adamic/Adar index had much
higher performance when computed on the unpermuted network, indicating that it also extracts
higher-order information. This analysis, enabled by network permutation, measured the extent to
which features rely on degree for a speci�c prediction task by assessing performance beyond the
degree-based, nonspeci�c baseline.

Conclusion

We developed a network permutation framework and open-source software implementation that
quanti�es the probability of edge existence due to degree and can assess the fraction of feature
performance attributable to degree. We demonstrated the superiority of the edge prior over other
degree-based features for quantifying the e�ect of degree on the probability of edge existence. The
XSwap methods and software provide a context for evaluating edge prediction methods and speci�c
predictions for reliance on degree and, therefore, nonspeci�city. Network edge prediction is a
common task in biological and biomedical research, and it can be greatly in�uenced by degree.
Degree should be considered directly in prediction approaches to avoid making nonspeci�c or trivial
predictions due to degree imbalance or bias. A careful accounting of degree’s e�ects enables
contextualized model evaluation and can help to quantify nonspeci�city in biomedical network edge
prediction.
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Supplementary Information

XSwap parameter settings for network types

Table S1:  Applications of the modi�ed XSwap algorithm to various network types with appropriate parameter choices.
For simple networks, each node’s degree is preserved. For bipartite networks, each node’s number of connections to the
other part is preserved, and the partite sets (node class memberships) are preserved. For directed networks, each
nodes’ in- and out-degrees are preserved, though parameter choices depend on the network being permuted. Some
directed networks can include antiparallel edges or loops while others do not.

Network
type

Degree
preserved

Figure
allow_antiparall
el

allow_loops

simple all False False

directed in/out Depends on networks
Depends on
networks

bipartite
Depends on
directedness

True True

Performance of the XSwap algorithm

The performance of the XSwap algorithm depends on a number of network properties. We de�ne
network density to be the number of edges divided by the number of potential edges. Increasing
network density lowers the asymptotic fraction of edges changed, as greater density prevents the
algorithm from removing certain edges. Random graphs generated with a preferential attachment
mechanism (via Barabási–Albert) can have a lower fraction of their edges swapped, asymptotically, as
compared to uniform random graphs (via Erdős–Rényi).

https://dl.acm.org/doi/10.5555/2981345.2981386
https://doi.org/gtbgzd
https://doi.org/10.5821/dissertation-2117-95691


Figure S1:  Higher density networks have lower asymptotic fractions of edges swapped and take more attempts
to reach these values. The Barabási–Albert model produces scale-free random graphs, while Erdős–Rényi generates
random graphs where all edges are equally likely.

Approximate edge prior

To approximate the edge prior, we began by making two simpli�cations. First, we assumed
independence between node pairs. This assumption does not actually hold for the XSwap algorithm,
though it is a reasonable simpli�cation for large, sparse networks. Second, we assumed that the
XSwap process is stationary. This assumption also does not actually hold, but it was made because it
signi�cantly simpli�es the problem. A single node pair has two possible states, “edge” and “no edge”.
These states are not transient, and they are not periodic so long as more than one possible swap
exists in the network. In almost all cases, then, our simpli�ed model of the algorithm gives the state of
a node pair as an ergodic process, independent of other node pairs.

Let  represent the existence of edge  For a given node pair, , then, let  represent the
transition probability from the “no edge” state to the “edge” state in one successful iteration of the
XSwap algorithm. Let  represent the probability of the opposite transition (“edge” to “no edge”) in

one successful iteration. With “no edge” represented as  and “edge” represented as , the
transition matrix, , is given by the following:

The stationary distribution of this system should correspond to the distribution when the number of
swaps goes to in�nity. It can be found by computing the eigenvectors of the system, as we know that
the stationary distribution vector,  satis�es . The eigenvector , normalized to sum to 1 as
a probability vector, is given by

The asymptotic edge probability is therefore
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Since node pairs are being treated as independent, the probability of an edge being created in one
successful iteration, given that the edge does not currently exist, is the ratio of the number of edge
choices involving nodes  and  to the total number of possible swaps, . Let  represent the
degree of source node  and  represent the degree of target node .

Similarly, the probability of an edge being eliminated in one iteration is the ratio of the number of
edge choices involving  and any other valid edge to the total number of possible swaps. Let  be
the total number of edges in the network.

The approximate edge prior is, therefore,

Unfortunately, we found that the above edge prior approximation is a poor approximation in many
cases. We found that the following modi�ed form (introduced in Methods) a�ords a superior
approximation:

Interestingly, this expression can be derived by normalizing the eigenvector  to be a unit vector in

the 2-norm instead of the 1-norm; that is, we use the value  instead of .
Because the modi�ed form of the approximation o�ers a much superior �t to the data, we chose to
include only the modi�ed version in the released Python package, and we used the modi�ed form
throughout our analysis.

Networks used for comparison

Table S2: Networks used for the comparison. Abbreviations are protein-protein interaction (PPI) and transcription-
factor-target-gene (TF-TG).

Data Network Nodes Edges

Hetionet AdG Source: 402, Target: 20945 102240

AeG Source: 402, Target: 20945 526407

AlD Source: 402, Target: 137 3602

AuG Source: 402, Target: 20945 97848
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BPpG Source: 11381, Target: 20945 559504

CCpG Source: 1391, Target: 20945 73566

CbG Source: 1552, Target: 20945 11571

CcSE Source: 1552, Target: 5734 138944

CdG Source: 1552, Target: 20945 21102

CrC 1552 6486

CuG Source: 1552, Target: 20945 18756

DaG Source: 137, Target: 20945 12623

DdG Source: 137, Target: 20945 7623

DpS Source: 137, Target: 438 3357

DuG Source: 137, Target: 20945 7731

GuG 20945 265672

GcG 20945 61690

GiG 20945 147164

GpMF Source: 20945, Target: 2884 97222

GpPW Source: 20945, Target: 1822 84372

PPI

Sampled 3992 255522

Literature 3992 364743

Systematic 3916 12913

bioRxiv

Sampled 4587 30686

<2018 4615 43691

All time 4615 44963

TF-TG Sampled Source: 142, Target: 1396 2689

Literature Source: 144, Target: 1406 3496

Systematic Source: 144, Target: 1417 29177

Edge prediction features



In the table that follows, let  denote the set of neighbors of node . Let  represent the
normalized Laplacian adjacency matrix, and let  be a vector with all ones except for a one in the -
th position.  For a directed graph, let  denote the set of nodes that node  points to and 

the set of nodes that point to . All de�nitions that follow are the score between nodes  and .

Table S3:  Edge prediction features.

Feature De�nition Citation

Jaccard index [36]

Preferential attachment score [36]

Resource allocation index [34]

Adamic/Adar index [37]

Random walk with restart score [38,39]

Inference score [40]
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