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Abstract

Background

Knowledge graphs support biomedical research e�orts by providing contextual information for
biomedical entities, constructing networks, and supporting the interpretation of high-throughput
analyses. These databases are populated via manual curation, which is challenging to scale with an
exponentially rising publication rate. Data programming is a paradigm that circumvents this arduous
manual process by combining databases with simple rules and heuristics written as label functions,
which are programs designed to annotate textual data automatically. Unfortunately, writing a useful
label function requires substantial error analysis and is a nontrivial task that takes multiple days per
function. This bottleneck makes populating a knowledge graph with multiple nodes and edge types
practically infeasible. Thus, we sought to accelerate the label function creation process by evaluating
how label functions can be re-used across multiple edge types.

Results

We obtained entity-tagged abstracts and subsetted these entities to only contain compounds, genes,
and disease mentions. We extracted sentences containing co-mentions of certain biomedical entities
contained in a previously described knowledge graph, Hetionet v1. We trained a baseline model that
used database-only label functions and then used a sampling approach to measure how well adding
edge-speci�c or edge-mismatch label function combinations improved over our baseline. Next, we
trained a discriminator model to detect sentences that indicated a biomedical relationship and then
estimated the number of edge types that could be recalled and added to Hetionet v1. We found that
adding edge-mismatch label functions rarely improved relationship extraction, while control edge-
speci�c label functions did. There were two exceptions to this trend, Compound-binds-Gene and
Gene-interacts-Gene, which both indicated physical relationships and showed signs of transferability.
Across the scenarios tested, discriminative model performance strongly depends on generated
annotations. Using the best discriminative model for each edge type, we recalled close to 30% of
established edges within Hetionet v1.

Conclusions

Our results show that this framework can incorporate novel edges into our source knowledge graph.
However, results with label function transfer were mixed. Only label functions describing very similar
edge types supported improved performance when transferred. We expect that the continued
development of this strategy may provide essential building blocks to populating biomedical
knowledge graphs with discoveries, ensuring that these resources include cutting-edge results.

Introduction

Knowledge bases are essential resources that hold complex structured and unstructured information.
These resources have been used to construct networks for drug repurposing discovery [1,2,3] or as a
source of training labels for text mining systems [4,5,6]. Populating knowledge bases often requires
highly trained scientists to read biomedical literature and summarize the results through manual
curation [7]. In 2007, researchers estimated that �lling a knowledge base via manual curation would
require approximately 8.4 years to complete [8]. As the rate of publications increases exponentially
[doi:10.1002/asi.23329?], using only manual curation to populate a knowledge base has become
nearly impractical.



Relationship extraction is one of several solutions to the challenge posed by an exponentially growing
body of literature [7]. This process creates an expert system to automatically scan, detect, and extract
relationships from textual sources. These expert systems fall into three types: unsupervised, rule-
based, and supervised systems.

Unsupervised systems extract relationships without the need for annotated text. These approaches
utilize linguistic patterns such as the frequency of two entities appearing in a sentence together more
often than chance, commonly referred to as co-occurrence [9,10,11,12,13,14,15,16,17]. For example, a
possible system would say gene X is associated with disease Y because gene X and disease Y appear
together more often than chance [9]. Besides frequency, other systems can utilize grammatical
structure to identify relationships [18]. This information is modeled in the form of a tree data
structure, termed a dependency tree. Dependency trees depict words as nodes, and edges represent
a word’s grammatical relationship with one another. Through clustering on these generated trees, one
can identify patterns that indicate a biomedical relationship [18]. Unsupervised systems are desirable
since they do not require well-annotated training data; however, precision may be limited compared
to supervised machine learning systems.

Rule-based systems rely heavily on expert knowledge to perform relationship extraction. These
systems use linguistic rules and heuristics to identify critical sentences or phrases that suggest the
presence of a biomedical relationship [19,20,21,22,23,24]. For example, a hypothetical extractor
focused on protein phosphorylation events would identify sentences containing the phrase “gene X
phosphorylates gene Y” [19]. These approaches provide exact results, but the quantity of positive
results remains modest as sentences consistently change in form and structure. For this project, we
constructed our label functions without the aid of these works; however, the approaches mentioned
in this section provide substantial inspiration for novel label functions in future endeavors.

Supervised systems depend on machine learning classi�ers to predict the existence of a relationship
using biomedical text as input. These classi�ers can range from linear methods such as support vector
machines [25,26] to deep learning [27,28,29,30,31,32], which all require access to well-annotated
datasets. Typically, these datasets are usually constructed via manual curation by individual scientists
[33,34,35,36,37] or through community-based e�orts [38,39,40]. Often, these datasets are well
annotated but are modest in size, making model training hard as these algorithms become
increasingly complex.

Distant supervision is a paradigm that quickly sidesteps manual curation to generate large training
datasets. This technique assumes that positive examples have been previously established in selected
databases, implying that the corresponding sentences or data points are also positive [4]. The central
problem with this technique is that generated labels are often of low quality, resulting in many false
positives [41]. Despite this caveat there have been notable e�ort using this technique [42,43,44].

Data programming is one proposed solution to amend the false positive problem in distant
supervision. This strategy combines labels obtained from distant supervision with simple rules and
heuristics written as small programs called label functions [45]. These outputs are consolidated via a
noise-aware model to produce training labels for large datasets. Using this paradigm can dramatically
reduce the time required to obtain su�cient training data; however, writing a helpful label function
requires substantial time and error analysis. This dependency makes constructing a knowledge base
with a myriad of heterogenous relationships nearly impossible as tens or hundreds of label functions
are necessary per relationship type.

This paper seeks to accelerate the label function creation process by measuring how label functions
can be reused across di�erent relationship types. We hypothesized that sentences describing one
relationship type might share linguistic features such as keywords or sentence structure with
sentences describing other relationship types. If this hypothesis were to, one could drastically reduce



the time needed to build a relation extractor system and swiftly populate large databases like
Hetionet v1. We conducted a series of experiments to estimate how label function reuse enhances
performance over distant supervision alone. As biomedical data comes in various forms
(e.g. publications, electronic health records, images, genomic sequences, etc.), we chose to subset this
space to only include open-access biomedical publications available on pubmed. We focused on
relationships that indicated similar types of physical interactions (i.e., Gene-binds-Gene and
Compound-binds-Gene) and two more distinct types (i.e., Disease-associates-Gene and Compound-
treats-Disease).

Methods and Materials

Hetionet

Hetionet v1 [3] is a heterogeneous network that contains pharmacological and biological information.
This network depicts information in the form of nodes and edges of di�erent types. Nodes in this
network represent biological and pharmacological entities, while edges represent relationships
between entities. Hetionet v1 contains 47,031 nodes with 11 di�erent data types and 2,250,197 edges
that represent 24 di�erent relationship types (Figure 1). Edges in Hetionet v1 were obtained from
open databases, such as the GWAS Catalog [46], Human Interaction database [47] and DrugBank [48].
For this project, we analyzed performance over a subset of the Hetionet v1 edge types: disease
associates with a gene (DaG), compound binds to a gene (CbG), compound treating a disease (CtD),
and gene interacts with gene (GiG) (bolded in Figure 1).

Figure 1:  A metagraph (schema) of Hetionet v1 where biomedical entities are represented as nodes and the
relationships between them are represented as edges. We examined performance on the highlighted subgraph;
however, the long-term vision is to capture edges for the entire graph.



Dataset

We used PubTator Central [49] as input to our analysis. PubTator Central provides MEDLINE abstracts
that have been annotated with well-established entity recognition tools including Tagger One [50] for
disease, chemical and cell line entities, tmVar [51] for genetic variation tagging, GNormPlus [52] for
gene entities and SR4GN [53] for species entities. We downloaded PubTator Central on March 1, 2020,
at which point it contained approximately 30,000,000 documents. After downloading, we �ltered out
annotated entities that were not contained in Hetionet v1. We extracted sentences with two or more
annotations and termed these sentences as candidate sentences. We used the Spacy’s English natural
language processing (NLP) pipeline (en_core_web_sm) [54] to generate dependency trees and parts of
speech tags for every extracted candidate sentence. Each candidate sentence was strati�ed by their
corresponding abstract ID to produce a training set, tuning set, and a testing set. We used random
assortment to assign dataset labels to each abstract. Every abstract had a 70% chance of being
labeled training, 20% chance of being labeled tuning, and 10% chance of being labeled testing. Despite
the power of data programming, all text mining systems need to have ground truth labels to be well-
calibrated. We hand-labeled �ve hundred to a thousand candidate sentences of each edge type to
obtain a ground truth set (Table 1).

Table 1:  Statistics of Candidate Sentences. We sorted each abstract into a training, tuning and testing set. Numbers in
parentheses show the number of positives and negatives that resulted from the hand-labeling process.

Relationship Train Tune Test

Disease-associates-
Gene (DaG) 2.49 M 696K (397+, 603-) 348K (351+, 649-)

Compound-binds-Gene
(CbG) 2.4M 684K (37+, 463-) 341k (31+, 469-)

Compound-treats-
Disease (CtD) 1.5M 441K (96+, 404-) 223K (112+, 388-)

Gene-interacts-Gene
(GiG) 11.2M 2.19M (60+, 440-) 1.62M (76+, 424-)

Label Functions for Annotating Sentences

The challenge of having too few ground truth annotations is familiar to many biomedical applications
that use natural language processing, even when unannotated text is abundant. Data programming
circumvents this issue by quickly annotating large datasets using multiple noisy signals emitted by
label functions [45]. We chose to use data programming for this project as it allows us to provide
generalizable rules that can be reused in future text mining systems. Label functions are simple
pythonic functions that emit: a positive label (1), a negative label (0), or abstain from emitting a label
(-1). These functions can use di�erent approaches or techniques to emit a label; however, these
functions can be grouped into simple categories discussed below. Once constructed, these functions
are combined using a generative model to output a single annotation. This single annotation is a
consensus probability score bounded between 0 (low chance of mentioning a relationship) and 1 (high
chance of mentioning a relationship). We used these annotations to train a discriminative model for
the �nal classi�cation step.

Label Function Categories

Label functions can be constructed in various ways; however, they also share similar characteristics.
We grouped functions into databases and text patterns. The majority of our label functions fall into
the text pattern category (Supplemental Table 2). Further, we described each label function category



and provided an example that refers to the following candidate sentence: “PTK6 may be a novel
therapeutic target for pancreatic cancer”.

Databases: These label functions incorporate existing databases to generate a signal, as seen in
distant supervision [4]. These functions detect if a candidate sentence’s co-mention pair is present in a
given database. Our label function emits a positive label if the pair is present and abstains otherwise.
If the pair is not present in any existing database, a separate label function emits a negative label. We
used a separate label function to prevent a label imbalance problem, which can occur when a single
function labels every possible sentence despite being correct or not. If this problem isn’t handled
correctly, the generative model could become biased and only emit one prediction (solely positive or
solely negative) for every sentence.

Text Patterns: These label functions are designed to use keywords or sentence context to generate a
signal. For example, a label function could focus on the number of words between two mentions and
emit a label if two mentions are too close. Alternatively, a label function could focus on the parts of
speech contained within a sentence and ensures a verb is present. Besides parts of speech, a label
function could exploit dependency parse trees to emit a label. These trees are akin to the tree data
structure where words are nodes and edges are how each word modi�es each other. Label functions
that use these parse trees will test if the generated tree matches a pattern and emits a positive label if
true. For our analysis, we used previously identi�ed patterns designed for biomedical text to generate
our label functions [18].

Each text pattern label function was constructed via manual examination of sentences within the
training set. For example, using the candidate sentence above, one would identify the phrase “novel
therapeutic target” and incorporate this phrase into a global list that a label function would use to
check if present in a sentence. After initial construction, we tested and augmented the label function
using sentences in the tune set. We repeated this process for every label function in our repertoire.

Table 2:  The distribution of each label function per relationship.

Relationship Databases (DB) Text Patterns (TP)

DaG 7 30

CtD 3 22

CbG 9 20

ΛDB(D,G) = { 1 (D,G) ∈ DB

0 otherwise

Λ¬DB(D,G) = {−1 (D,G) ∉ DB

0 otherwise

ΛTP (D,G) = { 1 " target " ∈ Candidate Sentence

−1 otherwise

ΛTP (D,G) = { 0 " VB " ∉ pos_tags(Candidate Sentence)
−1 otherwise

ΛTP (D,G) = { 1 dep(Candidate Sentence) ∈ Cluster Theme

−1 otherwise



Relationship Databases (DB) Text Patterns (TP)

GiG 9 28

Training Models

Generative Model

The generative model is a core part of this automatic annotation framework. It integrates multiple
signals emitted by label functions to assign each candidate sentence the most appropriate training
class. This model takes as input a label function output in the form of a matrix where rows represent
candidate sentences, and columns represent each label function ( ). Once constructed, this
model treats the true training class ( ) as a latent variable and assumes that each label function is
independent of one another. Under these two assumptions, the model �nds the optimal parameters
by minimizing a loglikelihood function marginalized over the latent training class.

Following optimization, the model emits a probability estimate that each sentence belongs to the
positive training class. At this step, each probability estimate can be discretized via a chosen threshold
into a positive or negative class. This model uses the following parameters to generate training
estimates: weight for the l2 loss, a learning rate, and the number of epochs. We �xed the learning rate
to be 1e-3 as we found that higher weights produced NaN results. We also �xed the number of
epochs to 250 and performed a grid search of �ve evenly spaced numbers between 0.01 and 5 for the
l2 loss parameter. Following the training phase, we used a threshold of 0.5 for discretizing training
classes’ probability estimates within our analysis. For more information on how the likelihood function
is constructed and minimized, refer to [55].

Discriminative Model

The discriminative model is the �nal step in this framework. This model uses training labels generated
from the generative model combined with sentence features to classify the presence of a biomedical
relationship. Typically, the discriminative model is a neural network. In the context of text mining,
these networks take the form of transformer models [31], which have achieved high-performing
results. Their past performance lead us to choose BioBERT [30] as our discriminative model. BioBERT
[30] is a BERT [56] model that was trained on all papers and abstracts within Pubmed Central [57].
BioBERT provides its own set of word embeddings, dense vectors representing words that models
such as neural networks can use to construct sentence features. We downloaded a pre-trained
version of this model using huggingface’s transformer python package [58] and �ne-tuned it using our
generated training labels. Our �ne-tuning approach involved freezing all downstream layers except for
the classi�cation head of this model. Next, we trained this model for 10 epochs using the Adam
optimizer [59] with huggingface’s default parameter settings and a learning rate of 0.001.

Experimental Design

Reusing label functions across edge types would substantially reduce the number of label functions
required to extract multiple relationships from biomedical literature. We �rst established a baseline
by training a generative model using only distant supervision label functions designed for the target
edge type. Then we compared the baseline model with models that incorporated a set number of text
pattern label functions. Using a sampling with replacement approach, we sampled these text pattern
label functions from three di�erent groups: within edge types, across edge types, and from a pool of

Λnxm

Y

θ̂ = argminθ∑
Y

−log(Pθ(Λ,Y ))



all label functions. We compared within-edge-type performance to across-edge-type and all-edge-type
performance. We sampled a �xed number of label functions for each edge type consisting of �ve
evenly spaced numbers between one and the total number of possible label functions. We repeated
this sampling process 50 times for each point. Furthermore, we also trained the discriminative model
using annotations from the generative model trained on edge-speci�c label functions at each point.
We report the performance of both models in terms of the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve (AUPR) for each sample.
Next, we aggregated each individual sample’s performance by constructing bootstrapped con�dence
intervals. Ensuing model evaluations, we quanti�ed the number of edges we could incorporate into
Hetionet v1. We used our best-performing discriminative model to score every candidate sentence
within our dataset and grouped candidates based on their mention pair. We took the max score
within each candidate group, and this score represents the probability of the existence of an edge. We
established edges using a cuto� score that produced an equal error rate between the false positives
and false negatives. Lastly, we report the number of preexisting edges we could recall and the
number of novel edges we can incorporate.

Results

Generative Model Using Randomly Sampled Label Functions

Creating label functions is a labor-intensive process that can take days to accomplish. We sought to
accelerate this process by measuring how well label functions can be reused. We evaluated this by
performing an experiment where label functions are sampled on an individual (edge vs. edge) level
and a global (collective pool of sources) level. We observed that performance increased when edge-
speci�c label functions were added to an edge-speci�c baseline model, while label function reuse
usually provided less bene�t (AUROC Figure 2, AUPR Supplemental Figure 6). The quintessential
example of this overarching trend is the Compound-treats-Disease (CtD) edge type, where edge-
speci�c label functions consistently outperformed transferred label functions. However, there is
evidence that label function transferability may be feasible for selected edge types and label function
sources. Performance increases as more Gene-interacts-Gene (GiG) label functions are incorporated
into the Compound-binds-Gene (CbG) baseline model and vice versa. This trend suggests that
sentences for GiG and CbG may share similar linguistic features or terminology that allows for label
functions to be reused, which could relate to both describing physical interaction relationships.
Perplexingly, edge-speci�c Disease-associates-Gene (DaG) label functions did not improve
performance over label functions drawn from other edge types. Overall, only CbG and GiG showed
signi�cant signs of reusability. This pattern suggests that label function transferability may be possible
for these two edge types.



Figure 2:  Edge-speci�c label functions perform better than edge-mismatch label functions, but certain mismatch
situations show signs of successful transfer. Each line plot header depicts the edge type the generative model is trying to
predict, while the colors represent the source of label functions. For example, orange represents sampling label
functions designed to predict the Compound-treats-Disease (CtD) edge type. The x-axis shows the number of randomly
sampled label functions incorporated as an addition to the database-only baseline model (the point at 0). The y-axis
shows the area under the receiver operating curve (AUROC). Each point on the plot shows the average of 50 sample
runs, while the error bars show the 95% con�dence intervals of all runs. The baseline and “All” data points consist of
sampling from the entire �xed set of label functions.

We found that sampling from all label function sources at once usually underperformed relative to
edge-speci�c label functions (Figure 3 and Supplemental Figure 7). The gap between edge-speci�c
sources and all sources widened as we sampled more label functions. CbG is a prime example of this
trend (Figure 3 and Supplemental Figure 7), while CtD and GiG show a similar but milder trend. DaG
was the exception to the general rule. The pooled set of label functions improved performance over
the edge-speci�c ones, which aligns with the previously observed results for individual edge types
(Figure 2). When pooling all label functions, the decreasing trend supports the notion that label
functions cannot simply transfer between edge types (exception being CbG on GiG and vice versa).



Figure 3:  Using all label functions generally hinders generative model performance. Each line plot header depicts the
edge type the generative model is trying to predict, while the colors represent the source of label functions. For
example, orange represents sampling label functions designed to predict the Compound-treats-Disease (CtD) edge type.
The x-axis shows the number of randomly sampled label functions incorporated as an addition to the database-only
baseline model (the point at 0). The y-axis shows the area under the receiver operating curve (AUROC). Each point on
the plot shows the average of 50 sample runs, while the error bars show the 95% con�dence intervals of all runs. The
baseline and “All” data points consist of sampling from the entire �xed set of label functions.

Discriminative Model Performance

The discriminative model is intended to augment performance over the generative model by
incorporating textual features together with estimated training labels. We found that the
discriminative model generally outperformed the generative model with respect to AUROC as more
edge-speci�c label functions were incorporated (Figure 4). Regarding AUPR, this model outperformed
the generative model for the DaG edge type. At the same time, it had close to par performance for the
rest of the edge types (Supplemental Figure 8). The discriminative model’s performance was often
poorest when very few edge-speci�c label functions were incorporated into the baseline model (seen
in DaG, CbG, and GiG). This example suggests that training generative models with more label
functions produces better outputs for training for discriminative models. CtD was an exception to this
trend, where the discriminative model outperformed the generative model at all sampling levels in
regards to AUROC. We observed the opposite trend with the CbG edges as the discriminative model
was always worse or indistinguishable from the generative model. Interestingly, the AUPR for CbG
plateaus below the generative model and decreases when all edge-speci�c label functions are used
(Supplemental Figure 8). This trend suggests that the discriminative model might have predicted more
false positives in this setting. Overall, incorporating more edge-speci�c label functions usually
improved performance for the discriminative model over the generative model.



Figure 4:  The discriminative model usually improves faster than the generative model as more edge-speci�c label
functions are included. The line plot headers represent the speci�c edge type the discriminative model is trying to
predict. The x-axis shows the number of randomly sampled label functions incorporated as an addition to the baseline
model (the point at 0). The y axis shows the area under the receiver operating curve (AUROC). Each data point
represents the average of 3 sample runs for the discriminator model and 50 sample runs for the generative model. The
error bars represent each run’s 95% con�dence interval. The baseline and “All” data points consist of sampling from the
entire �xed set of label functions.

Text Mined Edges Can Expand a Database-derived Knowledge Graph



Figure 5:  Text-mined edges recreate a substantial fraction of an existing knowledge graph and include new predictions.
This bar chart shows the number of edges we can successfully recall in green and indicates the number of new edges in
blue. 
The recall for the Hetionet v1 knowledge graph is shown as a percentage in parentheses. For example, for the
Compound-treats-Disease (CtD) edge, our method recalls 30% of existing edges and can add 6,282 new ones.

One of the goals of our work is to measure the extent to which learning multiple edge types could
construct a biomedical knowledge graph. Using Hetionet v1 as an evaluation set, we measured this
framework’s recall and quanti�ed the number of edges that may be incorporated with high
con�dence. Overall, we were able to recall about thirty percent of the preexisting edges for all edge
types (Figure 5) and report our top ten scoring sentences for each edge type in Supplemental Table 3.
Our best recall was with the CbG edge type, where we retained 33% of preexisting edges. In contrast,
we only recalled close to 30% for CtD, while the other two categories achieved a recall score close to
22%. Despite the modest recall level, the amount of novel edge types remains elevated. This notion
highlights that Hetionet v1 is missing a compelling amount of biomedical information, and
relationship extraction is a viable way to close the information gap.

Discussion

Filling out knowledge bases via manual curation can be an arduous and erroneous task [8]. Using
manual curation alone becomes impractical as the rate of publications continuously increases. Data
programming is a paradigm that uses label functions to speed up the annotation process and can be
used to solve this problem. However, creating useful label functions is an obstacle to this paradigm,
which takes considerable time. We tested the feasibility of re-using label functions to reduce the
number of label functions required for strong prediction performance.

Our sampling experiment revealed that adding edge-speci�c label functions is better than adding o�-
edge label functions. An exception to this trend is using label functions designed from conceptually



related edge types (using GiG label functions to predict CbG sentences and vice versa). Furthermore,
broad edge types such as DaG did not follow this trend as we found this edge to be agnostic to any
tested label function source. One possibility for this observation is that the “associates” relationship is
a general concept that may include other concepts such as Disease (up/down) regulating a Gene
(examples highlighted in our annotated sentences). These two results suggest that the transferability
of label functions is likely to relate to the nature of the edge type in question, so determining how
many label functions will be required to scale across multiple relationship types will depend on how
conceptually similar those types are.

The discriminator model did not have an apparent positive or negative e�ect on performance;
however, we noticed that performance heavily depended on the annotations provided by the
generative model. This pattern suggests a focus on label function construction and generative model
training may be key steps to focus on in future work. Although we found that label functions cannot
be re-used across all edge types with the standard task framing, strategies like multitask [60] or
transfer learning [61] may make multi-label-function e�orts more successful.

Conclusions

We found that performance often increased through the tested range of 25-30 di�erent label
functions per relationship type. Our �nding of limited value for reuse across most edge type pairs
suggests that the amount of work required to construct graphs will scale linearly based on the
number of edge types. We did not investigate whether certain individual label functions, as opposed
to the full set of label functions for an edge type, were particularly reusable. It remains possible that
some functions are generic and could be used as the base through supplementation with additional,
type-speci�c, functions. Literature continues to grow at a rate likely to surpass what is feasible by
human curation. Further work is needed to understand how to automatically extract large-scale
knowledge graphs from the wealth of biomedical text.

Supplemental Information

An online version of this manuscript is available at
https://greenelab.github.io/text_mined_hetnet_manuscript/. Labeled sentences are available at
https://github.com/greenelab/text_mined_hetnet_manuscript/tree/master/supplementary_materials/a
nnotated_sentences. Source code for this work is available under open licenses at:
https://github.com/greenelab/snorkeling-full-text/.
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Supplemental Figures

Generative Model Using Randomly Sampled Label Functions

Individual Sources

Figure 6:  Edge-speci�c label functions improve performance over edge-mismatch label functions. Each line plot header
depicts the edge type the generative model is trying to predict, while the colors represent the source of label functions.
For example, orange represents sampling label functions designed to predict the Compound treats Disease (CtD) edge
type. The x-axis shows the number of randomly sampled label functions incorporated as an addition to the database-
only baseline model (the point at 0). The y-axis shows the area under the precision-recall curve (AUPR). Each point on
the plot shows the average of 50 sample runs, while the error bars show the 95% con�dence intervals of all runs. The
baseline and “All” data points consist of sampling from the entire �xed set of label functions.

Collective Pool of Sources



Figure 7:  Using all label functions generally hinders generative model performance. Each line plot header depicts the
edge type the generative model is trying to predict, while the colors represent the source of label functions. For
example, orange represents sampling label functions designed to predict the Compound treats Disease (CtD) edge type.
The x-axis shows the number of randomly sampled label functions incorporated as an addition to the database-only
baseline model (the point at 0). The y-axis shows the area under the precision-recall curve (AUPR). Each point on the plot
shows the average of 50 sample runs, while the error bars show the 95% con�dence intervals of all runs. The baseline
and “All” data points consist of sampling from the entire �xed set of label functions.

Discriminative Model Performance



Figure 8:  The discriminator model improves performance as the number of edge-speci�c label functions is added to
the baseline model. The line plot headers represent the speci�c edge type the discriminator model is trying to predict.
The x-axis shows the number of randomly sampled label functions incorporated as an addition to the baseline model
(the point at 0). The y axis shows the area under the precision-recall curve (AUPR). Each data point represents the
average of 3 sample runs for the discriminator model and 50 sample runs for the generative model. The error bars
represent each run’s 95% con�dence interval. The baseline and “All” data points consist of sampling from the entire
�xed set of label functions.

Supplemental Tables

Top Ten Sentences for Each Edge Type

Table 3:  Contains the top ten predictions for each edge type. Highlighted words represent entities mentioned within
the given sentence.
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the stathmin1 mrna expression level in de novo al patient be high than that in
healthy person ( p < 0.05 ) , the [stathmin1].{gene_color} mrna expression level in
relapse patient with al be high than that in de novo patient ( p < 0.05 ) , and there
be no signi�cant di�erence of stathmin1 mrna expression between patient with
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in analysis of [idc ].{disease_color} cell , the level of [insig2].{gene_color} mrna
expression be signi�cantly high in late - stage patient than in early - stage patient .
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high [numb].{disease_color} expression be associate with favorable prognosis in
patient with [lung adenocarcinoma].{gene_color} , but not in those with squamous
cell carcinoma .
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harbor egfr mutation ( p = 0.008 ) , and no or signi�cantly low level expression of
ttf-1 be observe in [adenocarcinomas].{disease_color} harbor kras mutation ( p =
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a common polymorphism within act and il-1beta gene a�ect plasma level of [act].
{gene_color} or il-1beta , and [ad].{disease_color} patient with the act t , t or il-1beta
t , t genotype show the high level of plasma act or il-1beta , respectively .
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expression of traf6 be highly elevated in [esophageal cancer].{disease_color} tissue
, and patient with high [traf6].{gene_color} expression have a signi�cantly short
survival time than those with low traf6 expression .
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the proportion of circulate [th1].{gene_color} cell and the level of t - bet , ifng mrna
be increase in [ht].{disease_color} patient , the expression of ifng - as1 be
upregulated and positively correlate with the proportion of circulate th1 cell or t -
bet , and ifng expression , or serum level of anti - thyroglobulin antibody /
thyroperoxidase antibody in ht patient .
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hormone receptor status rather than her2 status be signi�cantly associate with
increase ki-67 and [p53].{gene_color} expression in triple [- negative ].
{disease_color} breast carcinoma , and high expression of ki-67 but not p53 be
signi�cantly associate with axillary nodal metastasis in triple - negative and high -
grade non - triple - negative breast carcinoma .
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high [cd147].{gene_color} expression in patient with [esophageal cancer].
{disease_color} be associate with bad survival outcome and common
clinicopathological indicator of poor prognosis .

CtD

D
o
c
e
t
a
x
e
l

p
r
o
s
t
a
t
e
c
a
n
c
e
r

0.9
96

0.96
4

5
6
1
4

E
x
i
s
t
i
n
g

docetaxel and atrasentan versus [docetaxel ].{compound_color} and placebo for
man with advanced castration - resistant [prostate cancer].{disease_color} ( swog
s0421 ) : a randomised phase 3 trial
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clinical e�ect of prior trastuzumab on combination [eribulin mesylate].
{compound_color} plus trastuzumab as �rst - line treatment for human epidermal
growth factor receptor 2 positive locally recurrent or metastatic [breast cancer].
{disease_color} : result from a phase ii , single - arm , multicenter study
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[zoledronate].{compound_color} in combination with chemotherapy and surgery to
treat [osteosarcoma].{disease_color} ( os2006 ) : a randomised , multicentre , open
- label , phase 3 trial .
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the role of [ixazomib].{compound_color} as an augment conditioning therapy in
salvage autologous stem cell transplant ( asct ) and as a post - asct consolidation
and maintenance strategy in patient with relapse multiple myeloma ( accord [ uk -
mra [myeloma].{disease_color} xii ] trial ) : study protocol for a phase iii randomise
controlled trial
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combine chemotherapy with cisplatin , etoposide , and irinotecan versus
[topotecan].{compound_color} alone as second - line treatment for patient with
[sensitive relapse small].{disease_color} - cell lung cancer ( jcog0605 ) : a
multicentre , open - label , randomised phase 3 trial .
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accelerate versus standard [epirubicin].{compound_color} follow by
cyclophosphamide , methotrexate , and �uorouracil or capecitabine as adjuvant
therapy for [breast cancer].{disease_color} in the randomised uk tact2 trial (
cruk/05/19 ) : a multicentre , phase 3 , open - label , randomise , control trial
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sunitinib plus [paclitaxel].{compound_color} versus bevacizumab plus paclitaxel for
�rst - line treatment of patients with [advanced breast cancer].{disease_color} : a
phase iii , randomized , open - label trial
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a european organisation for research and treatment of cancer randomize , double -
blind , placebo - control , multicentre [phase].{disease_color} ii trial of anastrozole
in combination with [ge�tinib or placebo in hormone].{compound_color} receptor -
positive advanced breast cancer ( nct00066378 ) .
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[ge�tinib].{compound_color} versus placebo as maintenance therapy in patient
with locally advanced or metastatic [non - small].{disease_color} - cell lung cancer (
inform ; c - tong 0804 ) : a multicentre , double - blind randomise phase 3 trial .
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ipilimumab versus placebo after radiotherapy in patient with metastatic castration
- resistant [prostate cancer].{disease_color} that have progress after [docetaxel].
{compound_color} chemotherapy ( ca184 - 043 ) : a multicentre , randomised ,
double - blind , phase 3 trial
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[tmp].{compound_color} / smz ( 320/1600 mg / day ) treatment be compare to
placebo in a double - blind , randomized trial in [patient with newly diagnose].
{disease_color} small cell carcinoma of the lung during the initial course of
chemotherapy with cyclophosphamide , doxorubicin , and etoposide .
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amphiregulin ( ar ) and heparin - binding egf - like growth factor ( hb - [egf].
{gene_color} ) bind and activate the egfr while heregulin ( hrg [) act ].
{compound_color} through the p185erbb-2 and p180erbb-4 tyrosine kinase .
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at least two domain of p85 can bind to [ank3 ].{gene_color} , and the interaction
involve the p85 c - sh2 domain be �nd to be [phosphotyrosine].{compound_color} -
independent .
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sulfonylurea act by inhibition of [beta - cell ].{compound_color} adenosine
triphosphate - dependent potassium ( k(atp ) ) channel after bind to the
sulfonylurea subunit 1 [receptor ( ].{gene_color} sur1 ) .
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amphiregulin ( [ar ) ].{gene_color} and heparin - binding egf - like growth factor ( hb
- egf ) bind and activate the egfr while heregulin ( hrg [) act ].{compound_color}
through the p185erbb-2 and p180erbb-4 tyrosine kinase .
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upon activation of the receptor for the epidermal growth factor ( [egfr ) ].
{gene_color} , sprouty2 undergoe phosphorylation at a conserve [tyrosine ].
{compound_color} that recruit the src homology 2 domain of c - cbl .
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as a member of the subclass iii family of receptor [tyrosine].{compound_color}
kinase , kit be closely relate to the receptor for platelet derive growth factor alpha
and beta ( pdgf - a and b [) , macrophage colony ].{gene_color} stimulate factor ( m -
csf ) , and �t3 ligand .
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the efgr family be a group of four structurally similar [tyrosine ].{compound_color}
kinase ( egfr , her2 / neu , erbb-3 [, and erbb-4].{gene_color} ) that dimerize on bind
with a number of ligand , include egf and transform growth factor alpha .
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the [epidermal growth factor receptor ].{gene_color} be a member of type - -pron-
growth factor receptor [family ].{compound_color} with tyrosine kinase activity that
be activate follow the binding of multiple cognate ligand .
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stimulation of quiescent rodent �broblast with either epidermal or platelet - derive
growth factor induce an increase a�nity of vav for cbl - b and result in the
[subsequent ].{gene_color} formation of a vav - [dependent ].{compound_color}
trimeric complex with the ligand - stimulate tyrosine kinase receptor .
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the retinoid z receptor beta ( [rzr beta ) ].{gene_color} , an orphan receptor , be a
member of the [retinoic acid].{compound_color} receptor ( rar)/thyroid hormone
receptor ( tr ) subfamily of nuclear receptor .
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these result suggest that the [tryptophan ].{compound_color} and quinuclidine
series of nk-1 antagonist bind to similar bind site on the human [nk-1 receptor ].
{gene_color} .
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the bind pocket of [cyslt2 ].{gene2_color} receptor and the proposition of the
interaction mode between [cyslt2 ].{gene1_color} and hami3379 be identify .
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after bind ligand , the [ppar ].{gene2_color} - y receptor heterodimerize [with ].
{gene1_color} the rxr receptor .
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nuclear hormone receptor , for example , bind either as homodimer or as
heterodimer with [retinoid x receptor ].{gene1_color} ( [rxr ) ].{gene2_color} to half -
site repeat that be stabilize by protein - protein interaction mediate by residue
within both the dna- and ligand - bind domain .
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mutation of these residue within the [holo - alpha(2a)ar diminish grk2-promoted].
{gene2_color} phosphorylation [of ].{gene1_color} the receptor as well as the ability
of the kinase to be activate by receptor binding .
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the crystal structure of the ligand bind domain ( lbd ) of the estrogen - relate
receptor [alpha ].{gene2_color} ( [erralpha , ].{gene1_color} nr3b1 ) complexe with a
coactivator peptide from peroxisome proliferator - activate receptor coactivator-
1alpha ( pgc-1alpha ) reveal a transcriptionally active conformation in the absence
of a ligand .
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these �nding indicate the novel bind site require for [vwf ].{gene2_color} binding of
human [gpibalpha ].{gene1_color} .

GiG

N
R
2
C
1

N
R
2
C
1

0.0
27

0.52
2

2
6

N
o
v
e
l

the human [testicular receptor 2].{gene1_color} ( [tr2 )].{gene2_color} , a member
of the nuclear hormone receptor superfamily , have no identify ligand yet .
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the crystal structure of the ligand bind domain ( lbd ) of the estrogen - relate
receptor [3 (].{gene2_color} err3 ) complexe with a steroid receptor [coactivator-1
(].{gene1_color} src-1 ) peptide reveal a transcriptionally active conformation in
absence of any ligand .
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although these agent can bind and activate an orphan nuclear receptor ,
[peroxisome proliferator - activate].{gene2_color} receptor [gamma ( ].
{gene1_color} ppargamma ) , there be no direct evidence to conclusively implicate
this receptor in the regulation of mammalian glucose homeostasis .
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ligand bind experiment with purify [er alpha].{gene2_color} and [er beta].
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receptor modeling of [kgfr].{gene1_color} be use to identify selective kgfr tyrosine
kinase ( tk ) inhibitor molecule that have the potential to bind selectively to the
[kgfr].{gene2_color} .


