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Abstract

Motivation

Most models can be �t to data using various optimization approaches. While model choice is
frequently reported in machine-learning-based research, optimizers are not often noted. We applied
two di�erent implementations of LASSO logistic regression implemented in Python’s scikit-learn
package, using two di�erent optimization approaches (coordinate descent, implemented in the 
liblinear  library, and stochastic gradient descent, or SGD), to predict mutation status and gene

essentiality from gene expression across a variety of pan-cancer driver genes. For varying levels of
regularization, we compared performance and model sparsity between optimizers.

Results

After model selection and tuning, we found that liblinear  and SGD tended to perform
comparably. liblinear  models required more extensive tuning of regularization strength,
performing best for high model sparsities (more nonzero coe�cients), but did not require selection of
a learning rate parameter. SGD models required tuning of the learning rate to perform well, but
generally performed more robustly across di�erent model sparsities as regularization strength
decreased. Given these tradeo�s, we believe that the choice of optimizers should be clearly reported
as a part of the model selection and validation process, to allow readers and reviewers to better
understand the context in which results have been generated.

Availability and implementation

The code used to carry out the analyses in this study is available at
https://github.com/greenelab/pancancer-evaluation/tree/master/01_strati�ed_classi�cation.
Performance/regularization strength curves for all genes in the Vogelstein et al. 2013 dataset are
available at https://doi.org/10.6084/m9.�gshare.22728644.

https://github.com/greenelab/pancancer-evaluation/tree/master/01_stratified_classification
https://doi.org/10.6084/m9.figshare.22728644


Introduction

Gene expression pro�les are widely used to classify samples or patients into relevant groups or
categories, both preclinically [1,2] and clinically [3,4]. To extract informative gene features and to
perform classi�cation, a diverse array of algorithms exist, and di�erent algorithms perform well
across varying datasets and tasks [1]. Even within a given model class, multiple optimization methods
can often be applied to �nd well-performing model parameters or to optimize a model’s loss function.
One commonly used example is logistic regression. The widely used scikit-learn Python package for
machine learning [5] provides two modules for �tting logistic regression classi�ers: 
LogisticRegression , which uses the liblinear  coordinate descent method [6] to �nd

parameters that optimize the logistic loss function, and SGDClassifier , which uses stochastic
gradient descent [7] to optimize the same loss function.

Using scikit-learn, we compared the liblinear  (coordinate descent) and SGD optimization
techniques for two prediction problems using two cancer transcriptomics datasets. We �rst
considered prediction of driver mutation status in tumor samples, across a wide variety of genes
implicated in cancer initiation and development [8]. We additionally predicted gene essentiality
(dependency) from gene expression in cancer cell lines, across several genes playing di�erent roles in
cancer. We applied LASSO (L1-regularized) logistic regression, and tuned the strength of the
regularization to compare model selection between optimizers. We found that across a variety of
models (i.e. varying regularization strengths), the training dynamics of the optimizers were
considerably di�erent: models �t using liblinear  tended to perform best at fairly high
regularization strengths (100-1000 nonzero features in the model) and over�t easily with low
regularization strengths. On the other hand, after tuning the learning rate, models �t using SGD
tended to perform well across both higher and lower regularization strengths, and over�tting was less
common.

Our results caution against viewing optimizer choice as a “black box” component of machine learning
modeling. The observation that LASSO logistic regression models �t using SGD tended to perform well
for low levels of regularization, across diverse driver genes, runs counter to conventional wisdom in
machine learning for high-dimensional data which generally states that explicit regularization and/or
feature selection is necessary. Comparing optimizers or model implementations directly is rare in
applications of machine learning for genomics, and our work shows that this choice can a�ect
generalization and interpretation properties of the model signi�cantly. Based on our results, we
recommend considering the appropriate optimization approach carefully based on the goals of each
individual analysis.



Methods

TCGA data download and preprocessing

To generate binary mutated/non-mutated gene labels for our machine learning model, we used
mutation calls for TCGA Pan-Cancer Atlas samples from MC3 [9] and copy number threshold calls
from GISTIC2.0 [10]. MC3 mutation calls were downloaded from the Genomic Data Commons (GDC) of
the National Cancer Institute, at https://gdc.cancer.gov/about-data/publications/pancanatlas.
Thresholded copy number calls are from an older version of the GDC data and are available here:
https://�gshare.com/articles/dataset/TCGA_PanCanAtlas_Copy_Number_Data/6144122. We removed
hypermutated samples, de�ned as two or more standard deviations above the mean non-silent
somatic mutation count, from our dataset to reduce the number of false positives (i.e., non-driver
mutations). Any sample with either a non-silent somatic variant or a copy number variation (copy
number gain in the target gene for oncogenes and copy number loss in the target gene for tumor
suppressor genes) was included in the positive set; all remaining samples were considered negative
for mutation in the target gene.

RNA sequencing data for TCGA was downloaded from GDC at the same link provided above for the
Pan-Cancer Atlas. We discarded non-protein-coding genes and genes that failed to map and removed
tumors that were measured from multiple sites. After �ltering to remove hypermutated samples and
taking the intersection of samples with both mutation and gene expression data, 9074 total TCGA
samples remained.

Cancer gene set construction

In order to study mutation status classi�cation for a diverse set of cancer driver genes, we started
with the set of 125 frequently altered genes from Vogelstein et al. [8] (all genes from Table S2A). For
each target gene, in order to ensure that the training dataset was reasonably balanced (i.e., that there
would be enough mutated samples to train an e�ective classi�er), we included only cancer types with
both: 1) at least 15 of the total samples for the given cancer type are mutated, and 2) at least 5% of
the total samples for the given cancer type are mutated. We refer to these cancer types here as “valid”
cancer types. For genes that are not frequently mutated, this occasionally resulted in no valid cancer
types, and we dropped these genes from the analysis. Out of the 125 genes originally listed in the
Vogelstein et al. cancer gene set, we retained 84 target genes.

Mutation status prediction classi�er setup and data splitting

We trained logistic regression classi�ers to predict whether or not a given sample had a mutational
event in a given target gene, using gene expression features as explanatory variables or signatures of
mutation. Our models were trained on gene expression data as features, or predictor variables (X,
16,148 input genes from pre-processed TCGA RNA-seq data). The response/target variable used (y)
was the presence or absence of a mutation in a target gene, generated for each sample as described
in the “Data download and preprocessing” section. Based on our previous work, gene expression is
generally e�ective for this problem across many target genes, so we limited our analyses in this study
to this data type [11]. To control for varying mutation burden per sample and to adjust for potential
cancer type-speci�c expression patterns, we included one-hot encoded cancer type and log10(sample
mutation count) in the model as covariates, in addition to the gene expression features.

To compare model selection across optimizers on a consistent set of held-out data, we �rst split the
“valid” cancer types into train (75%) and test (25%) sets. We then split the training data into “subtrain”
(66% of the training set) data to train the model on, and “holdout” (33% of the training set) data to

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://figshare.com/articles/dataset/TCGA_PanCanAtlas_Copy_Number_Data/6144122


perform model selection, i.e. to use to select the best-performing regularization parameter, and the
best-performing learning rate for SGD in the cases where multiple learning rates were considered. In
each case, these splits were strati�ed by cancer type, i.e. each split had as close as possible to equal
proportions of each cancer type included in the dataset for the given driver gene.

LASSO parameter range selection and comparison between optimizers

Since gene expression datasets tend to have many dimensions and comparatively few samples, we
used a LASSO penalty to perform feature selection [12]. LASSO logistic regression has the advantage
of generating sparse models (some or most coe�cients are 0), as well as having a single tunable
hyperparameter which can be easily interpreted as an indicator of regularization strength, or model
complexity. The scikit-learn implementations of coordinate descent (in 
liblinear / LogisticRegression ) and stochastic gradient descent (in SGDClassifier ) use

slightly di�erent parameterizations of the LASSO regularization strength parameter. liblinear ’s
logistic regression solver optimizes the following loss function:

where  denotes the negative log-likelihood of the observed data  given a particular
choice of feature weights . SGDClassifier  optimizes the following loss function:

which is equivalent with the exception of the LASSO parameter which is formulated slightly di�erently,
as . The result of this slight di�erence in parameterization is that liblinear   values vary

inversely with regularization strength (higher values = less regularization, or greater model
complexity) and SGDClassifier   values vary directly with regularization strength (lower values =
less regularization, or greater model complexity).

For the liblinear  optimizer, we trained models using  values evenly spaced on a logarithmic
scale between (10-3, 107); i.e. the output of numpy.logspace(-3, 7, 21) . For the SGD optimizer,
we trained models using the inverse range of  values between (10-7, 103), or numpy.logspace(-7, 
3, 21) . These hyperparameter ranges were intended to give evenly distributed coverage across
genes that included “under�t” models (predicting only the mean or using very few features, poor
performance on all datasets), “over�t” models (performing perfectly on training data but
comparatively poorly on cross-validation and test data), and a wide variety of models in between that
typically included the best �ts to the cross-validation and test data.

For ease of visual comparison in our �gures, we plot the SGD  parameter directly, and the 
liblinear   parameter inversely (i.e.  ). This orients the x-axes of the relevant plots in the same

direction: lower values represent lower regularization strength or higher model complexity, and
higher values represent higher regularization strength or lower model complexity, for both
optimizers.

SGD learning rate selection

scikit-learn’s SGDClassifier  provides four built-in approaches to learning rate scheduling: 
constant  (a single, constant learning rate), optimal  (a learning rate with an initial value selected

using a heuristic based on the regularization parameter and the data loss, that decreases across
epochs), invscaling  (a learning rate that decreases exponentially by epoch), and adaptive  (a
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ŵ = argminw ℓ(X, y; w) + α||w||1

α = 1
C

C

α

C

α

α

C 1
C



learning rate that starts at a constant value, which is divided by 5 each time the training loss fails to
decrease for 5 straight epochs). The optimal  learning rate schedule is used by default.

When we compared these four approaches, we used a constant learning rate of 0.0005, and an initial
learning rate of 0.1 for the adaptive  and invscaling  schedules. We also tested a �fth approach
that we called “ constant_search ”, in which we tested a range of constant learning rates in a grid
search on a validation dataset, then evaluated the model on the test data using the best-performing
constant learning rate by validation AUPR. For the grid search, we used the following range of
constant learning rates: {0.00001, 0.0001, 0.001, 0.01}. Unless otherwise speci�ed, results for SGD in
the main paper �gures used the constant_search  approach, which performed the best in our
comparison between schedulers.

DepMap gene essentiality prediction

To generate binary essential/not essential gene labels for cell lines, we used the data available on the
Cancer Dependency Map (DepMap) download portal at https://depmap.org/portal/download/all/.
Essentiality information for each gene perturbation was downloaded in the 
CRISPRGeneDependency.csv  �le (version 23Q2), and gene expression information was

downloaded in the CCLE_expression.csv  �le (version 22Q2). We thresholded the gene
dependency probabilities into the top 20% (most likely to be a dependency on the given gene in the
given cell type) and bottom 80%, assigning a 1 label to the former and a 0 label to the latter. We
integrated the gene dependency data with the gene expression data using the DepMap_ID  identi�er,
and dropped any cell lines that were not present in both datasets. We preprocessed the gene
expression data using the same steps as for the TCGA data, resulting in a total of 17931 gene features.
We applied the same cancer type �lters and cross-validation setup strati�ed by cancer type as for the
TCGA data as well.

For benchmarking of essentiality prediction and comparison of optimization strategies, we aimed to
choose several genes with diverse functions, but our goal was not to explore the space of gene
perturbations completely since other studies have addressed this (e.g. [13]). We chose 5 oncogenes
(BRAF, EGFR, ERBB2, KRAS, PIK3CA) which have been documented as examples of “oncogene
addiction”; i.e. cancer cells with a mutation in these genes are dependent on the mutation, and when
it is reversed or removed this is lethal. We additionally chose 5 genes with known synthetic lethal
relationships in a subset of cancers, some of which have targeted therapies in clinical trials or in
current clinical use: PARP1 ([14]), RAD52 ([15]), POLQ ([16]), USP1 ([17]), and PRMT5 ([18]). Finally, we
chose 3 more genes that were highlighted in a DepMap study [19] as having “di�erential
dependencies” across cell lines: PTPN11, MDM4, and CYFIP1.

https://depmap.org/portal/download/all/


Results

liblinear  and SGD LASSO models perform comparably, but 
liblinear  is sensitive to regularization strength

For each of 84 driver genes from the Vogelstein et al. 2013 paper, we trained models to predict
mutation status (presence or absence) from RNA-seq data, derived from the TCGA Pan-Cancer Atlas.
Gene expression signatures that distinguish mutated from wild-type samples have been previously
validated in multiple cancer driver genes and pathways of interest [20,21,22] and benchmarked
broadly across genes and data types [11,23], and the resulting signatures or classi�ers can be used to
identify patients with atypical alterations or susceptibilities to targeted therapy [24,25,26]. For each
optimizer, we trained LASSO logistic regression models across a variety of regularization parameters
(see Methods for parameter range details), achieving a variety of di�erent levels of model sparsity
(Supplementary Figure S1). We repeated model �tting/evaluation across 4 cross-validation splits x 2
replicates (random seeds) for a total of 8 di�erent models per parameter. Cross-validation splits were
strati�ed by cancer type.

Previous work has shown that pan-cancer classi�ers of Ras mutation status are accurate and
biologically informative [20]. We �rst evaluated models for KRAS mutation prediction. As model
complexity increases (more nonzero coe�cients) for the liblinear  optimizer, we observed that
performance increases then decreases, corresponding to over�tting for high model
complexities/numbers of nonzero coe�cients (Figure 1A). On the other hand, for the SGD optimizer,
we observed consistent performance as model complexity increases, with models having no nonzero
coe�cients performing comparably to the best (Figure 1B). In this case, top performance for SGD (a
regularization parameter of 3.16 x 10-3) is slightly better than top performance for liblinear  (a
regularization parameter of 1 / 3.16 x 102): we observed a mean test AUPR of 0.725 for SGD vs. mean
AUPR of 0.685 for liblinear .

To determine how relative performance trends with liblinear  tend to compare across the genes in
the Vogelstein dataset at large, we looked at the di�erence in performance between optimizers for
the best-performing models for each gene (Figure 1C). The distribution is centered around 0 and more
or less symmetrical, suggesting that across the gene set, liblinear  and SGD tend to perform
comparably to one another. We saw that for 58/84 genes, performance for the best-performing model
was better using SGD than liblinear , and for the other 25 genes performance was better using 
liblinear . In order to quantify whether the over�tting tendencies (or lack thereof) also hold across

the gene set, we plotted the di�erence in performance between the best-performing model and the
largest (least regularized) model; classi�ers with a large di�erence in performance exhibit strong
over�tting, and classi�ers with a small di�erence in performance do not over�t (Figure 1D). For SGD,
the least regularized models tend to perform comparably to the best-performing models, whereas for
liblinear  the distribution is wider suggesting that over�tting is more common.



Figure 1:  A. Performance vs. inverse regularization parameter for KRAS mutation status prediction, using the 
liblinear  coordinate descent optimizer. Dotted lines indicate top performance value of the opposite optimizer. B.

Performance vs. regularization parameter for KRAS mutation status prediction, using the SGD optimizer. “Holdout”
dataset is used for SGD learning rate selection, “test” data is completely held out from model selection and used for
evaluation. C. Distribution of performance di�erence between best-performing model for liblinear  and SGD
optimizers, across all 84 genes in Vogelstein driver gene set. Positive numbers on the x-axis indicate better performance
using liblinear , and negative numbers indicate better performance using SGD. D. Distribution of performance
di�erence between best-performing model and largest (least regularized) model, for liblinear  and SGD, across all
84 genes. Smaller numbers on the y-axis indicate less over�tting, and larger numbers indicate more over�tting.

SGD is sensitive to learning rate selection

The SGD results shown in Figure 1 select the best-performing learning rate using a grid search on the
holdout dataset, independently for each regularization parameter. We also compared against other
learning rate scheduling approaches implemented in scikit-learn (see Methods for implementation
details and grid search speci�cations). For KRAS mutation prediction, we observed that the choice of
initial learning rate and scheduling approach a�ects performance signi�cantly, and other approaches
to selecting the learning rate performed poorly relative to liblinear  (black dotted lines in Figure 2)
and to the grid search. We did not observe an improvement in performance over liblinear  or the
grid search for learning rate schedulers that decrease across epochs (Figure 2A, C, and D), nor did we
see comparable performance when we selected a single constant learning rate for all levels of
regularization without the preceding grid search (Figure 2B). Notably, scikit-learn’s default “optimal”
learning rate schedule performed relatively poorly for this problem, suggesting that tuning the
learning rate and selecting a well-performing scheduler is a critical component of applying SGD
successfully for this problem (Figure 2D). We observed similar trends across all genes in the Vogelstein
gene set, with other learning rate scheduling approaches performing poorly in aggregate relative to
both liblinear  and SGD with the learning rate grid search (Supplementary Figure S2).



Figure 2:  A. Performance vs. regularization parameter for KRAS mutation prediction, using SGD optimizer with adaptive
learning rate scheduler. Dotted line indicates top performance value using liblinear , from Figure 1A. B.
Performance vs. regularization parameter, using SGD optimizer with constant learning rate scheduler and a learning
rate of 0.0005. C. Performance vs. regularization parameter, using SGD optimizer with inverse scaling learning rate
scheduler. D. Performance vs. regularization parameter, using SGD optimizer with “optimal” learning rate scheduler.

liblinear  and SGD result in di�erent models, with varying loss
dynamics

We sought to determine whether there was a di�erence in the sparsity of the models resulting from
the di�erent optimization schemes. In general across all genes, the best-performing SGD models
mostly tend to have many nonzero coe�cients, but with a distinct positive tail, sometimes having few
nonzero coe�cients. By contrast, the liblinear  models are generally sparser with fewer than 2500
nonzero coe�cients, out of ~16100 total input features, and a much narrower tail (Figure 3A). The
sum of the coe�cient magnitudes, however, tends to be smaller on average across all levels of
regularization for SGD than for liblinear  (Figure 3B). This e�ect is less pronounced for the other
learning rate schedules shown in Figure 2, with the other options resulting in larger coe�cient
magnitudes (Supplementary Figure S3). These results suggest that the models �t by liblinear  and
SGD navigate the tradeo� between bias and variance in slightly di�erent ways: liblinear  tends to
produce sparser models (more zero coe�cients) as regularization increases, but if the learning rate is
properly tuned, SGD coe�cients tend to have smaller overall magnitudes as regularization increases.

We also compared the components of the loss function across di�erent levels of regularization
between optimizers. The LASSO logistic regression loss function can be broken down into a data-
dependent component (the log-loss) and a parameter magnitude dependent component (the L1
penalty), which are added to get the total loss that is minimized by each optimizer; see Methods for
additional details. As regularization strength decreases for liblinear , the data loss collapses to
near 0, and the L1 penalty dominates the overall loss (Figure 3C). For SGD, on the other hand, the data
loss decreases slightly as regularization strength decreases but remains relatively high (Figure 3D).
Other SGD learning rate schedules have similar loss curves to the liblinear  results, although this
does not result in improved classi�cation performance (Supplementary Figure S4).



Figure 3:  A. Distribution across genes of the number of nonzero coe�cients included in best-performing LASSO logistic
regression models. Violin plot density estimations are clipped at the ends of the observed data range, and boxes show
the median/IQR. B. Distribution across genes of the sum of model coe�cient weights for best-performing LASSO logistic
regression models. C. Decomposition of loss function for models �t using liblinear  across regularization levels. 0
values on the y-axis are rounded up to machine epsilon; i.e. 2.22 x 10-16. D. Decomposition of loss function for models
�t using SGD across regularization levels. 0 values on the y-axis are rounded up to machine epsilon; i.e. 2.22 x 10-16.

Gene essentiality prediction in cancer cell lines yields similar results

As a complementary problem to mutation status prediction in human tumor samples, we binarized
gene essentiality probabilities from the Cancer Dependency Map (DepMap) into the top 20% and
bottom 80%, then used the same strati�ed cross-validation setup as before to predict whether or not
held-out cell lines belonged to the top 20% using cell line gene expression data. We evaluated this for
13 genes, with a variety of cancer functions: 5 oncogenes (BRAF, EGFR, ERBB2, KRAS, PIK3CA) where
“oncogene addiction” has been observed, 5 genes (PARP1, RAD52, POLQ, USP1, PRMT5) with known
synthetic lethal relationships, and 3 genes (PTPN11, MDM4, CYFIP1) labeled as having “di�erential
dependencies” in a study of gene dependencies in DepMap [19]; additional detail in Methods. For
modeling KRAS perturbation, we saw a similar trend in the cell line data as in the mutation prediction
example, where liblinear  over�ts for high model complexities (Figure 4A) and SGD is more
resistant to over�tting (Figure 4B). Although performance across the other selected gene
perturbations varied considerably (Supplementary Figure S5), we saw largely similar trends across
other genes where models performed well, with the exception of ERBB2 which did tend to over�t for
SGD as well as liblinear (Supplementary Figure S6).

Across all 13 genes, when we compared the best-performing models for liblinear  and SGD, we did
not see a systematic advantage for either optimizer, matching the results of the comparison across
genes for mutation status prediction (Figure 4C). Similar to the pattern in Figure 3A, for gene
essentiality prediction we also observed that liblinear -optimized models tended to be smaller on
average than models optimized by SGD, with a relatively condensed distribution for liblinear  on
the order of hundreds to thousands of genes, but a “long tail” for SGD extending to models with tens
of thousands of genes (Figure 4D). In general, these data suggest that the tradeo� between optimizers
yields comparable results, and comparable recommendations, for a related classi�cation problem on
a distinct cancer transcriptomics data set.



Figure 4:  A. Performance vs. inverse regularization parameter for KRAS gene essentiality prediction, using the 
liblinear  coordinate descent optimizer. B. Performance vs. regularization parameter for KRAS gene essentiality

prediction, using the SGD optimizer. “Holdout” dataset is used for SGD learning rate selection, “test” data is completely
held out from model selection and used for evaluation. C. Distribution of performance di�erence between best-
performing model for liblinear  and SGD optimizers, across all 13 genes in gene essentiality prediction set. Positive
numbers on the x-axis indicate better performance using liblinear , and negative numbers indicate better
performance using SGD. D. Distribution across 13 genes of the number of nonzero coe�cients included in best-
performing LASSO logistic regression models for essentiality prediction.



Discussion

Our work shows that optimizer choice presents tradeo�s in model selection for cancer
transcriptomics. We observed that LASSO logistic regression models for mutation status prediction
and gene essentiality prediction �t using stochastic gradient descent were highly sensitive to learning
rate tuning, but they tended to perform robustly across diverse levels of regularization and sparsity.
Coordinate descent implemented in liblinear  did not require learning rate tuning, but generally
performed best for a narrow range of fairly sparse models, over�tting as regularization strength
decreased. Tuning of regularization strength for liblinear , and learning rate (and regularization
strength to a lesser degree) for SGD, are critical steps which must be considered as part of analysis
pipelines. The sensitivity we observed to these details highlights the importance of reporting exactly
what optimizer was used, and how the relevant hyperparameters were selected, in studies that use
machine learning models for transcriptomic data. We recommend that both researchers and
reviewers emphasize consideration of these steps, and transparency in reporting them.

To our knowledge, the phenomenon we observed with SGD has not been documented in other
applications of machine learning to genomic or transcriptomic data. In recent years, however, the
broader machine learning research community has identi�ed and characterized implicit regularization
for SGD in many settings, including overparameterized or feature-rich problems as is often the case in
transcriptomics [27,28,29]. The resistance we observed of SGD-optimized models to decreased
performance on held-out data as model complexity increases is often termed “benign over�tting”:
over�t models, in the sense that they �t the training data perfectly and perform worse on the test
data, can still outperform models that do not �t the training data as well or that have stronger explicit
regularization. Benign over�tting has been attributed to optimization using SGD [29,30], and similar
patterns have been observed for both linear models and deep neural networks [31,32].

Existing gene expression prediction benchmarks and pipelines typically use a single model
implementation, and thus a single optimizer. We recommend thinking critically about optimizer
choice, but this can be challenging for researchers that are inexperienced with machine learning or
unfamiliar with how certain models are optimized under the hood. For example, R’s glmnet  package
uses a cyclical coordinate descent algorithm to �t logistic regression models [33], which would
presumably behave similarly to liblinear , but this is somewhat opaque in the glmnet
documentation itself. Increased transparency and documentation in popular machine learning
packages with respect to optimization, especially for models that are di�cult to �t or sensitive to
hyperparameter settings, would bene�t new and unfamiliar users.

Related to what we see in our SGD-optimized models, there exist other problems in gene expression
analysis where using all available features is comparable to, or better than, using a subset. For
example, using the full gene set improves correlations between preclinical cancer models and their
tissue of origin, as compared to selecting genes based on variability or tissue-speci�city [34]. On the
other hand, in a broader study than ours of cell line viability prediction from gene expression pro�les
across 100 gene perturbations and 5 di�erent datasets, selecting features by Pearson correlation
improves performance over using all features, similar to our liblinear  classi�ers [13]. In future
work, it could be useful to explore if the coe�cients found by liblinear  and SGD emphasize the
same pathways or functional gene sets, or if there are patterns to which mutation status classi�ers (or
other cancer transcriptomics classi�ers) perform better with more/fewer nonzero coe�cients.

Similarly, it would be interesting to explore in more detail the degree to which sample size, particularly
the proportion of samples containing a particular driver mutation, a�ects model performance and
optimizer dynamics. Although we observed in previous work that mutation status classi�ers for
cancer-related genes tend to outperform classi�ers for random genes with similar mutation



proportions [11], our dataset of cancer genes is likely enriched for genes that are commonly mutated
across cancer types, rather than speci�cally having a driver role in one or a few cancers. A more in-
depth study of cancer type-speci�c drivers could identify more localized patterns in which optimizer
performs best and how this may correlate with the dimensions of the dataset, which could be
averaged over or smoothed out by our pan-cancer approach in this study.



Data and code availability

The data analyzed during this study were previously published as part of the TCGA Pan-Cancer Atlas
project [35], and are available from the NIH NCI Genomic Data Commons (GDC). The scripts used to
download and preprocess the datasets for this study are available at
https://github.com/greenelab/pancancer-evaluation/tree/master/00_process_data, and the code used
to carry out the analyses in this study is available at https://github.com/greenelab/pancancer-
evaluation/tree/master/01_strati�ed_classi�cation, both under the open-source BSD 3-clause license.
Tables showing mutation counts and proportion of samples mutated for each gene and cancer type in
the dataset are available on Figshare at https://doi.org/10.6084/m9.�gshare.24442624, under a CC0
license. Equivalent versions of Figure 1A and 1B for all 84 genes in the Vogelstein et al. 2013 gene set
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manuscript was written using Manubot [36] and is available on GitHub at
https://github.com/greenelab/optimizer-manuscript under the CC0-1.0 license. This research was
supported in part by the University of Pittsburgh Center for Research Computing through the
resources provided. Speci�cally, this work used the HTC cluster, which is supported by NIH award
number S10OD028483.

https://github.com/greenelab/pancancer-evaluation/tree/master/00_process_data
https://github.com/greenelab/pancancer-evaluation/tree/master/01_stratified_classification
https://doi.org/10.6084/m9.figshare.24442624
https://doi.org/10.6084/m9.figshare.22728644
https://github.com/greenelab/optimizer-manuscript


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

References

The ability to classify patients based on gene-expression data varies by algorithm and
performance metric
Stephen R Piccolo, Avery Mecham, Nathan P Golightly, Jérémie L Johnson, Dustin B Miller
PLOS Computational Biology (2022-03-11) https://doi.org/gr43qd
DOI: 10.1371/journal.pcbi.1009926 · PMID: 35275931 · PMCID: PMC8942277

Supervised learning is an accurate method for network-based gene classi�cation
Renming Liu, Christopher A Mancuso, Anna Yannakopoulos, Kayla A Johnson, Arjun Krishnan
Bioinformatics (2020-04-14) https://doi.org/gmvnfc
DOI: 10.1093/bioinformatics/btaa150 · PMID: 32129827 · PMCID: PMC7267831

Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes
Joel S Parker, Michael Mullins, Maggie CU Cheang, Samuel Leung, David Voduc, Tammi Vickery,
Sherri Davies, Christiane Fauron, Xiaping He, Zhiyuan Hu, … Philip S Bernard
Journal of Clinical Oncology (2009-03-10) https://doi.org/c2688w
DOI: 10.1200/jco.2008.18.1370 · PMID: 19204204 · PMCID: PMC2667820

Prediction of adjuvant chemotherapy bene�t in endocrine responsive, early breast
cancer using multigene assays
Kathy S Albain, Soonmyung Paik, Laura van't Veer
The Breast (2009-10) https://doi.org/bp4rtw
DOI: 10.1016/s0960-9776(09)70290-5

Scikit-learn: Machine Learning in Python
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, … Édouard
Duchesnay
Journal of Machine Learning Research (2011) http://jmlr.org/papers/v12/pedregosa11a.html

LIBLINEAR: A Library for Large Linear Classi�cation
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin
Journal of Machine Learning Research (2008) http://jmlr.org/papers/v9/fan08a.html

Online Learning and Stochastic Approximations
Leon Bottou
(1998) https://wiki.eecs.yorku.ca/course_archive/2012-13/F/6328/_media/bottou-onlinelearning-
98.pdf

Cancer Genome Landscapes
B Vogelstein, N Papadopoulos, VE Velculescu, S Zhou, LA Diaz, KW Kinzler
Science (2013-03-28) https://doi.org/6rg
DOI: 10.1126/science.1235122 · PMID: 23539594 · PMCID: PMC3749880

Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple
Genomic Pipelines
Kyle Ellrott, Matthew H Bailey, Gordon Saksena, Kyle R Covington, Cyriac Kandoth, Chip Stewart,
Julian Hess, Singer Ma, Kami E Chiotti, Michael McLellan, … Armaz Mariamidze
Cell Systems (2018-03) https://doi.org/gf9twn
DOI: 10.1016/j.cels.2018.03.002 · PMID: 29596782 · PMCID: PMC6075717

GISTIC2.0 facilitates sensitive and con�dent localization of the targets of focal somatic
copy-number alteration in human cancers

https://doi.org/gr43qd
https://doi.org/10.1371/journal.pcbi.1009926
https://www.ncbi.nlm.nih.gov/pubmed/35275931
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942277
https://doi.org/gmvnfc
https://doi.org/10.1093/bioinformatics/btaa150
https://www.ncbi.nlm.nih.gov/pubmed/32129827
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267831
https://doi.org/c2688w
https://doi.org/10.1200/jco.2008.18.1370
https://www.ncbi.nlm.nih.gov/pubmed/19204204
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667820
https://doi.org/bp4rtw
https://doi.org/10.1016/s0960-9776(09)70290-5
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v9/fan08a.html
https://wiki.eecs.yorku.ca/course_archive/2012-13/F/6328/_media/bottou-onlinelearning-98.pdf
https://doi.org/6rg
https://doi.org/10.1126/science.1235122
https://www.ncbi.nlm.nih.gov/pubmed/23539594
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749880
https://doi.org/gf9twn
https://doi.org/10.1016/j.cels.2018.03.002
https://www.ncbi.nlm.nih.gov/pubmed/29596782
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075717


11.

12.

13.

14.

15.

16.

17.

18.

19.

Craig H Mermel, Steven E Schumacher, Barbara Hill, Matthew L Meyerson, Rameen Beroukhim,
Gad Getz
Genome Biology (2011-04) https://doi.org/dzhjqh
DOI: 10.1186/gb-2011-12-4-r41 · PMID: 21527027 · PMCID: PMC3218867

Widespread redundancy in -omics pro�les of cancer mutation states
Jake Crawford, Brock C Christensen, Maria Chikina, Casey S Greene
Genome Biology (2022-06-27) https://doi.org/gqfqnm
DOI: 10.1186/s13059-022-02705-y · PMID: 35761387 · PMCID: PMC9238138

Regression Shrinkage and Selection Via the Lasso
Robert Tibshirani
Journal of the Royal Statistical Society: Series B (Methodological) (1996-01)
https://doi.org/gfn45m
DOI: 10.1111/j.2517-6161.1996.tb02080.x

Gene expression has more power for predicting <i>in vitro</i> cancer cell vulnerabilities
than genomics
Joshua M Dempster, John M Krill-Burger, James M McFarland, Allison Warren, Jesse S Boehm,
Francisca Vazquez, William C Hahn, Todd R Golub, Aviad Tsherniak
Cold Spring Harbor Laboratory (2020-02-24) https://doi.org/ghczbr
DOI: 10.1101/2020.02.21.959627

Chromatin to Clinic: The Molecular Rationale for PARP1 Inhibitor Function
Felix Y Feng, Johann S de Bono, Mark A Rubin, Karen E Knudsen
Molecular Cell (2015-06) https://doi.org/gjq28s
DOI: 10.1016/j.molcel.2015.04.016 · PMID: 26091341 · PMCID: PMC4487541

Targeting BRCA1- and BRCA2-de�cient cells with RAD52 small molecule inhibitors
Fei Huang, Nadish Goyal, Katherine Sullivan, Kritika Hanamshet, Mikir Patel, Olga M Mazina,
Charles X Wang, WFrank An, James Spoonamore, Shailesh Metkar, … Alexander V Mazin
Nucleic Acids Research (2016-02-11) https://doi.org/f8qw72
DOI: 10.1093/nar/gkw087 · PMID: 26873923 · PMCID: PMC4872086

Genetic determinants of cellular addiction to DNA polymerase theta
Wanjuan Feng, Dennis A Simpson, Juan Carvajal-Garcia, Brandon A Price, Rashmi J Kumar, Lisle
E Mose, Richard D Wood, Naim Rashid, Jeremy E Purvis, Joel S Parker, … Gaorav P Gupta
Nature Communications (2019-09-19) https://doi.org/gpktwt
DOI: 10.1038/s41467-019-12234-1 · PMID: 31537809 · PMCID: PMC6753077

Ubiquitinated PCNA Drives USP1 Synthetic Lethality in Cancer
Antoine Simoneau, Justin L Engel, Madhavi Bandi, Katherine Lazarides, Shangtao Liu, Samuel R
Meier, Ashley H Choi, Hongxiang Zhang, Binzhang Shen, Lauren Martires, … Tianshu Feng
Molecular Cancer Therapeutics (2022-10-12) https://doi.org/gs226j
DOI: 10.1158/1535-7163.mct-22-0409 · PMID: 36228090 · PMCID: PMC9891357

Targeted CRISPR screening identi�es PRMT5 as synthetic lethality combinatorial target
with gemcitabine in pancreatic cancer cells
Xiaolong Wei, Jiekun Yang, Sara J Adair, Harun Ozturk, Cem Kuscu, Kyung Yong Lee, William J
Kane, Patrick E O’Hara, Denis Liu, Yusuf Mert Demirlenk, … Mazhar Adli
Proceedings of the National Academy of Sciences (2020-10-23) https://doi.org/gst9fb
DOI: 10.1073/pnas.2009899117 · PMID: 33097661 · PMCID: PMC7668168

De�ning a Cancer Dependency Map

https://doi.org/dzhjqh
https://doi.org/10.1186/gb-2011-12-4-r41
https://www.ncbi.nlm.nih.gov/pubmed/21527027
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218867
https://doi.org/gqfqnm
https://doi.org/10.1186/s13059-022-02705-y
https://www.ncbi.nlm.nih.gov/pubmed/35761387
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238138
https://doi.org/gfn45m
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/ghczbr
https://doi.org/10.1101/2020.02.21.959627
https://doi.org/gjq28s
https://doi.org/10.1016/j.molcel.2015.04.016
https://www.ncbi.nlm.nih.gov/pubmed/26091341
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487541
https://doi.org/f8qw72
https://doi.org/10.1093/nar/gkw087
https://www.ncbi.nlm.nih.gov/pubmed/26873923
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872086
https://doi.org/gpktwt
https://doi.org/10.1038/s41467-019-12234-1
https://www.ncbi.nlm.nih.gov/pubmed/31537809
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753077
https://doi.org/gs226j
https://doi.org/10.1158/1535-7163.mct-22-0409
https://www.ncbi.nlm.nih.gov/pubmed/36228090
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891357
https://doi.org/gst9fb
https://doi.org/10.1073/pnas.2009899117
https://www.ncbi.nlm.nih.gov/pubmed/33097661
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7668168


20.

21.

22.

23.

24.

25.

26.

27.

Aviad Tsherniak, Francisca Vazquez, Phil G Montgomery, Barbara A Weir, Gregory Kryukov,
Glenn S Cowley, Stanley Gill, William F Harrington, Sasha Pantel, John M Krill-Burger, … William C
Hahn
Cell (2017-07) https://doi.org/gbrhmb
DOI: 10.1016/j.cell.2017.06.010 · PMID: 28753430 · PMCID: PMC5667678

Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome
Atlas
Gregory P Way, Francisco Sanchez-Vega, Konnor La, Joshua Armenia, Walid K Chatila, Augustin
Luna, Chris Sander, Andrew D Cherniack, Marco Mina, Giovanni Ciriello, … Armaz Mariamidze
Cell Reports (2018-04) https://doi.org/gfspsb
DOI: 10.1016/j.celrep.2018.03.046 · PMID: 29617658 · PMCID: PMC5918694

Genomic and Molecular Landscape of DNA Damage Repair De�ciency across The Cancer
Genome Atlas
Theo A Knijnenburg, Linghua Wang, Michael T Zimmermann, Nyasha Chambwe, Galen F Gao,
Andrew D Cherniack, Huihui Fan, Hui Shen, Gregory P Way, Casey S Greene, … Armaz
Mariamidze
Cell Reports (2018-04) https://doi.org/gfspsc
DOI: 10.1016/j.celrep.2018.03.076 · PMID: 29617664 · PMCID: PMC5961503

Prediction of PIK3CA mutations from cancer gene expression data
Jun Kang, Ahwon Lee, Youn Soo Lee
PLOS ONE (2020-11-09) https://doi.org/gjmd3s
DOI: 10.1371/journal.pone.0241514 · PMID: 33166334 · PMCID: PMC7652327

Compressing gene expression data using multiple latent space dimensionalities learns
complementary biological representations
Gregory P Way, Michael Zietz, Vincent Rubinetti, Daniel S Himmelstein, Casey S Greene
Genome Biology (2020-05-11) https://doi.org/gg2mjh
DOI: 10.1186/s13059-020-02021-3 · PMID: 32393369 · PMCID: PMC7212571

Using Transcriptional Signatures to Find Cancer Drivers with LURE
David Haan, Ruikang Tao, Verena Friedl, Ioannis N Anastopoulos, Christopher K Wong, Alana S
Weinstein, Joshua M Stuart
Biocomputing 2020 (2019-11-27) https://doi.org/gjmd4t
DOI: 10.1142/9789811215636_0031

Identi�cation of phenocopies improves prediction of targeted therapy response over
DNA mutations alone
Hamza Bakhtiar, Kyle T Helzer, Yeonhee Park, Yi Chen, Nicholas R Rydzewski, Matthew L
Bootsma, Yue Shi, Paul M Harari, Marina Shari�, Martin Sjöström, … Shuang G Zhao
npj Genomic Medicine (2022-10-17) https://doi.org/gsjxt6
DOI: 10.1038/s41525-022-00328-7 · PMID: 36253482 · PMCID: PMC9576758

Identify non-mutational p53 functional de�ciency in human cancers
Qianpeng Li, Yang Zhang, Sicheng Luo, Zhang Zhang, Ann L Oberg, David E Kozono, Hua Lu,
Jann N Sarkaria, Lina Ma, Liguo Wang
Cold Spring Harbor Laboratory (2022-07-31) https://doi.org/gsn622
DOI: 10.1101/2022.07.28.501874

The Bene�ts of Implicit Regularization from SGD in Least Squares Problems
Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P Foster, Sham M Kakade
arXiv (2022-07-12) https://arxiv.org/abs/2108.04552

https://doi.org/gbrhmb
https://doi.org/10.1016/j.cell.2017.06.010
https://www.ncbi.nlm.nih.gov/pubmed/28753430
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667678
https://doi.org/gfspsb
https://doi.org/10.1016/j.celrep.2018.03.046
https://www.ncbi.nlm.nih.gov/pubmed/29617658
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918694
https://doi.org/gfspsc
https://doi.org/10.1016/j.celrep.2018.03.076
https://www.ncbi.nlm.nih.gov/pubmed/29617664
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961503
https://doi.org/gjmd3s
https://doi.org/10.1371/journal.pone.0241514
https://www.ncbi.nlm.nih.gov/pubmed/33166334
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652327
https://doi.org/gg2mjh
https://doi.org/10.1186/s13059-020-02021-3
https://www.ncbi.nlm.nih.gov/pubmed/32393369
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212571
https://doi.org/gjmd4t
https://doi.org/10.1142/9789811215636_0031
https://doi.org/gsjxt6
https://doi.org/10.1038/s41525-022-00328-7
https://www.ncbi.nlm.nih.gov/pubmed/36253482
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576758
https://doi.org/gsn622
https://doi.org/10.1101/2022.07.28.501874
https://arxiv.org/abs/2108.04552


28.

29.

30.

31.

32.

33.

34.

35.

36.

Can Implicit Bias Explain Generalization? Stochastic Convex Optimization as a Case Study
Assaf Dauber, Meir Feder, Tomer Koren, Roi Livni
arXiv (2020-12-23) https://arxiv.org/abs/2003.06152

Benign Over�tting of Constant-Stepsize SGD for Linear Regression
Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Sham Kakade
Proceedings of Thirty Fourth Conference on Learning Theory (2021-07-21)
https://proceedings.mlr.press/v134/zou21a.html

Understanding deep learning (still) requires rethinking generalization
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals
Communications of the ACM (2021-02-22) https://doi.org/gh57fd
DOI: 10.1145/3446776

Benign over�tting in linear regression
Peter L Bartlett, Philip M Long, Gábor Lugosi, Alexander Tsigler
Proceedings of the National Academy of Sciences (2020-04-24) https://doi.org/gjgsxq
DOI: 10.1073/pnas.1907378117 · PMID: 32332161 · PMCID: PMC7720150

Understanding deep learning requires rethinking generalization
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals
arXiv (2017-02-28) https://arxiv.org/abs/1611.03530

Regularization Paths for Generalized Linear Models via Coordinate Descent
Jerome Friedman, Trevor Hastie, Robert Tibshirani
Journal of Statistical Software (2010) https://doi.org/bb3d
DOI: 10.18637/jss.v033.i01

Evaluating cancer cell line and patient-derived xenograft recapitulation of tumor and
non-diseased tissue gene expression pro�les<i>in silico</i>
Avery S Williams, Elizabeth J Wilk, Jennifer L Fisher, Brittany N Lasseigne
Cold Spring Harbor Laboratory (2023-04-13) https://doi.org/gr6jr4
DOI: 10.1101/2023.04.11.536431 · PMID: 37090499 · PMCID: PMC10120639

The Cancer Genome Atlas Pan-Cancer analysis project
John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna RMills Shaw, Brad A Ozenberger, Kyle
Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart
Nature Genetics (2013-09-26) https://doi.org/f3nt5c
DOI: 10.1038/ng.2764 · PMID: 24071849 · PMCID: PMC3919969

Open collaborative writing with Manubot
Daniel S Himmelstein, Vincent Rubinetti, David R Slochower, Dongbo Hu, Venkat S Malladi,
Casey S Greene, Anthony Gitter
PLOS Computational Biology (2019-06-24) https://doi.org/c7np
DOI: 10.1371/journal.pcbi.1007128 · PMID: 31233491 · PMCID: PMC6611653

https://arxiv.org/abs/2003.06152
https://proceedings.mlr.press/v134/zou21a.html
https://doi.org/gh57fd
https://doi.org/10.1145/3446776
https://doi.org/gjgsxq
https://doi.org/10.1073/pnas.1907378117
https://www.ncbi.nlm.nih.gov/pubmed/32332161
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720150
https://arxiv.org/abs/1611.03530
https://doi.org/bb3d
https://doi.org/10.18637/jss.v033.i01
https://doi.org/gr6jr4
https://doi.org/10.1101/2023.04.11.536431
https://www.ncbi.nlm.nih.gov/pubmed/37090499
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120639
https://doi.org/f3nt5c
https://doi.org/10.1038/ng.2764
https://www.ncbi.nlm.nih.gov/pubmed/24071849
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919969
https://doi.org/c7np
https://doi.org/10.1371/journal.pcbi.1007128
https://www.ncbi.nlm.nih.gov/pubmed/31233491
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611653


Supplementary Material

Figure S1:  Number of nonzero coe�cients (model sparsity) across varying regularization parameter settings for KRAS
mutation prediction using SGD and liblinear  optimizers, and averaged across all genes for both optimizers. In the
“all genes” plot, the black dotted line shows the median parameter selected for liblinear , and the grey dotted line
shows the median parameter selected for SGD.



Figure S2:  Distribution of performance di�erence between best-performing model for liblinear  and SGD
optimizers, across all 84 genes in Vogelstein driver gene set, for varying SGD learning rate schedulers. Positive numbers
on the x-axis indicate better performance using liblinear , and negative numbers indicate better performance using
SGD.



Figure S3:  Sum of absolute value of coe�cients + 1 for KRAS mutation prediction using SGD and liblinear
optimizers, with varying learning rate schedules for SGD. Similar to the �gures in the main paper, the liblinear  x-
axis represents the inverse of the  regularization parameter; SGD x-axes represent the untransformed  parameter.C α



Figure S4:  Decomposition of loss function into data loss and L1 penalty components for KRAS mutation prediction
using SGD optimizer, across regularization levels, using varying learning rate schedulers. 0 values on the y-axis are
rounded up to machine epsilon, i.e. 2.22 x 10-16.



Figure S5:  Performance on held-out data for DepMap gene essentiality prediction from cell line gene expression for 13
di�erent genes, across cross-validation splits.



Figure S6:  Performance vs. regularization parameter for DepMap gene essentiality prediction, for liblinear
coordinate descent and SGD using a search over constant learning rates. “Holdout” dataset is used for SGD learning rate
selection, “test” data is completely held out from model selection and used only for evaluation.


