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Abstract

Background

In studies of cellular function in cancer, researchers are increasingly able to choose from many -omics
assays as functional readouts. Choosing the correct readout for a given study can be di�cult, and
which layer of cellular function is most suitable to capture the relevant signal remains unclear.

Results

We consider prediction of cancer mutation status (presence or absence) from functional -omics data
as a representative problem that presents an opportunity to quantify and compare the ability of
di�erent -omics readouts to capture signals of dysregulation in cancer. From the TCGA Pan-Cancer
Atlas that contains genetic alteration data, we focus on RNA sequencing, DNA methylation arrays,
reverse phase protein arrays (RPPA), microRNA, and somatic mutational signatures as -omics
readouts. Across a collection of genes recurrently mutated in cancer, RNA sequencing tends to be the
most e�ective predictor of mutation state. We �nd that one or more other data types for many of the
genes are approximately equally e�ective predictors. Performance is more variable between
mutations than that between data types for the same mutation, and there is little di�erence between
the top data types. We also �nd that combining data types into a single multi-omics model provides
little or no improvement in predictive ability over the best individual data type.

Conclusions

Based on our results, for the design of studies focused on the functional outcomes of cancer
mutations, there are often multiple -omics types that can serve as e�ective readouts, although gene
expression seems to be a reasonable default option.

Background

Although cancer can be initiated and driven by many di�erent genetic alterations, these tend to
converge on a limited number of pathways or signaling processes [1]. As driver mutation status alone
confers limited prognostic information, a comprehensive understanding of how diverse genetic
alterations perturb central pathways is vital to precision medicine and biomarker identi�cation e�orts
[2, 3]. While many methods exist to distinguish driver mutations from passenger mutations based on
genomic sequence characteristics [4–6], until recently it has been a challenge to connect driver
mutations to downstream changes in gene expression and cellular function within individual tumor
samples.

The Cancer Genome Atlas (TCGA) Pan-Cancer Atlas provides uniformly processed, multi-platform -
omics measurements across tens of thousands of samples from 33 cancer types [7]. Enabled by this
publicly available data, a growing body of work on linking the presence of driving genetic alterations in
cancer to downstream gene expression changes has emerged. Recent studies have considered Ras
pathway alteration status in colorectal cancer [8], alteration status across many cancer types in Ras
genes [9, 10], TP53 [11], and PIK3CA [12], and alteration status across cancer types in frequently
mutated genes [13]. More broadly, other groups have drawn on similar ideas to distinguish between
the functional e�ects of di�erent alterations in the same driver gene [14], to link alterations with
similar gene expression signatures within cancer types [15], and to identify trans-acting expression
quantitative trait loci (trans-eQTLs) in germline genetic studies [16].



These studies share a common thread: they each combine genomic (point mutation and copy number
variation) data with transcriptomic (RNA sequencing) data within samples to interrogate the functional
e�ects of genetic variation. RNA sequencing is ubiquitous and cheap, and its experimental and
computational methods are relatively mature, making it a vital tool for generating insight into cancer
pathology [17]. Some driver mutations, however, are known to act indirectly on gene expression
through varying mechanisms. For example, oncogenic IDH1 and IDH2 mutations in glioma have been
shown to interfere with histone demethylation, which results in increased DNA methylation and
blocked cell di�erentiation [18–21]. Other genes implicated in aberrant DNA methylation in cancer
include the TET family of genes [22] and SETD2 [23]. Certain driver mutations, such as those in DNA
damage repair genes, may lead to detectable patterns of somatic mutation [24]. Additionally,
correlation between gene expression and protein abundance in cancer cell lines is limited, and
proteomics data could correspond more directly to certain cancer phenotypes and pathway
perturbations [25]. In these contexts and others, integrating di�erent data modalities or combining
multiple data modalities could be more e�ective than relying solely on gene expression as a
functional signature.

Here, we compare -omics data types pro�led in the TCGA Pan-Cancer Atlas to evaluate use as a
multivariate functional readout of genetic alterations in cancer. We focus on gene expression (RNA
sequencing data), DNA methylation (27K and 450K probe chips), reverse phase protein array (RPPA),
microRNA expression, and mutational signatures data [26] as possible readouts. Prior studies have
identi�ed univariate correlations of CpG site methylation [27, 28] and correlations of RPPA protein
pro�les [29] with the presence or absence of certain driver mutations. Other relevant past work
includes linking point mutations and copy number variants (CNVs) with changes in methylation and
expression at individual genes [30, 31] and identifying functional modules that are perturbed by
somatic mutations [32, 33]. However, direct comparison among di�erent data types for this
application is lacking, particularly in the multivariate case where we consider changes to -omics-
derived gene signatures rather than individual genes in isolation.

We select a collection of potential cancer drivers with varying functions and roles in cancer
development. We use mutation status in these genes as labels to train classi�ers, using each of the
data types listed as training data, in a pan-cancer setting; we follow similar methods to the elastic net
logistic regression approach described in Way et al. 2018 [9] and Way et al. 2020 [13]. We show that
there is considerable predictive signal for many genes relative to a cancer-type corrected baseline and
that gene expression tends to provide good predictions of mutation state across most genes.
Surprisingly, we �nd that for a variety of genes, multiple data types are approximately equally
e�ective predictors. We observe similar results for pan-cancer survival prediction across the same
data types with little separation between the top-performing data types. In addition, we observe that
combining data types into a single multi-omics model for mutation prediction provides little, if any,
performance bene�t over the most performant model using a single data type. Our results will help to
inform the design of future functional genomics studies in cancer, suggesting that for many strong
drivers with clear functional signatures, di�erent -omics measurements can provide similar
information content.

Results

Using diverse data modalities to predict cancer alterations

We collected �ve di�erent data modalities from cancer samples in the TCGA Pan-Cancer Atlas,
capturing �ve steps of cellular function that are perturbed by genetic alterations in cancer (Figure 1A).
These included gene expression (RNA-seq data), DNA methylation (27K and 450K Illumina BeadChip
arrays), protein abundance (RPPA data), microRNA expression data, and patterns of somatic mutation
(mutational signatures). To link these diverse data modalities to changes in mutation status, we used



elastic net logistic regression to predict the presence or absence of mutations in cancer genes, using
these readouts as predictive features (Figure 1B). We evaluated the resulting mutation status
classi�ers in a pan-cancer setting, preserving the proportions of each of the 33 cancer types in TCGA
for eight train/test splits (4 folds x 2 replicates) in each of approximately 250 cancer genes (Figure 1C).

We sought to compare classi�ers against a baseline where mutation labels are permuted (to identify
genes whose mutation status correlates strongly with a functional signature in a given data type) and
also to compare classi�ers trained on true labels across di�erent data types (to identify data types
that are more or less predictive of mutations in a given gene). To account for variation between
dataset splits in making these comparisons, we treat classi�cation metrics from the eight train/test
splits as performance distributions, which we compare using t-tests. We summarize performance
across all genes in our cancer gene set using a similar approach to a volcano plot, in which each point
is a gene. In our summary plots, the x-axis shows the magnitude of the change in the classi�cation
metric between conditions, and the y-axis shows the p-value for the associated t-test (Figure 1C).

Figure 1:  A. Cancer mutations can perturb cellular function via a variety of cellular processes. Arrows represent major
potential paths of information �ow from a somatic mutation in DNA to its resulting cell phenotype; circular arrow
represents the ability of certain mutations (e.g. in DNA damage repair genes) to alter somatic mutation patterns. Note
that this does not re�ect all possible relationships between cellular processes: for instance, changes in gene expression
can lead to changes in somatic mutation rates. B. Predicting presence/absence of somatic alterations in cancer from
diverse data modalities. In this study, we use functional readouts from TCGA as predictive features and the presence or
absence of mutation in a given gene as labels. This reverses the primary direction of information �ow shown in Panel A.
C. Schematic of evaluation pipeline.

Selection of cancer-related genes improves predictive signal

As a baseline, we evaluated prediction of mutation status from gene expression data across several
di�erent gene sets. Past work has evaluated mutation prediction for the top 50 most mutated genes
in TCGA [13], and we sought to extend this to a broader list of gene sets. To evaluate whether using
known cancer-related genes tends to improve prediction, we compiled a set of cancer-related genes



(n=268) from Vogelstein et al. 2013 [34], Bailey et al. 2018 [35], and the COSMIC Cancer Gene Census
[36]. We compared performance on this curated gene set with performance on an equal number of
genes sampled randomly after applying a mutation frequency threshold (n=268, see Methods for
sampling details) and an equal number of the most mutated genes in TCGA (n=268). For all gene sets,
we used only the set of TCGA samples for which both gene expression and somatic mutation data
exists, resulting in a total of 9,074 samples across all 33 cancer types. This set of samples was further
�ltered for each target gene to cancer types containing at least 15 mutated samples and at least 5% of
samples mutated for that cancer type. As an alternate approach, we tried including/excluding entire
genes using similar �lters, and the results were consistent across �ltering strategies (Additional File 1:
Fig. S4). We then evaluated the performance for each target gene in each of the three gene sets.

Overall, genes from the cancer-related gene set were more predictable than randomly chosen genes
or those selected by total mutation count (Figure 2A). In total, for a signi�cance threshold of 

, 120/268 genes (44.8%) in the cancer-related gene set are signi�cantly predictable from
gene expression data, compared to 14/268 genes (5.22%) in the random gene set and 80/268 genes
(29.9%) in the most mutated gene set. Of the 14 signi�cantly predictable genes in the random gene
set, 13 of them are also in the cancer-related gene set (highlighted with ‘X’ in Figure 2B), and of the 80
signi�cantly predictable genes in the most mutated gene set, 26 of them are also in the cancer-related
gene set (highlighted in red in Figure 2C). These results suggest that selecting target genes for
mutation prediction based on prior knowledge of their involvement in cancer pathways and
processes, rather than randomly or based on mutation frequency alone, can improve predictive signal
and identify more highly predictable mutations from gene expression data.

Figure 2:  A. Overall distribution of performance across three gene sets, using gene expression (RNA-seq) data to
predict mutations. Each data point represents the mean cross-validated AUPR di�erence, compared with a baseline
model trained on permuted mutation presence/absence labels, for one gene in the given gene set; notches show
bootstrapped 95% con�dence intervals. “random” = 268 random genes, “most mutated” = 268 most mutated genes,
“cancer gene set” = 268 cancer related genes from curated gene sets. Signi�cance stars indicate results of Bonferroni-
corrected pairwise Wilcoxon tests: **: p < 0.01, ***: p < 0.001, ns: not statistically signi�cant for a cuto� of p = 0.05. B, C,
D. Volcano-like plots showing mutation presence/absence predictive performance for each gene in each of the three
gene sets. The x-axis shows the di�erence in mean AUPR compared with a baseline model trained on permuted labels,
and the y-axis shows p-values for a paired t-test comparing cross-validated AUPR values within folds. Points (genes)
marked with an “X” are overlapping between the cancer gene set and either the random or most mutated gene set.

α = 0.001



Gene expression predicts cancer mutation status more e�ectively
than DNA methylation

We compared gene expression with DNA methylation as downstream readouts of the e�ects of
cancer alterations. In these analyses, we considered both the 27K probe and 450K probe methylation
datasets generated for the TCGA Pan-Cancer Atlas. As target genes, we used the same combined
cancer-related gene set described in the “Selection of cancer-related genes” section. We used samples
that had data for each of the data types being compared, including somatic mutation data to generate
mutation labels. This process retained 7,981 samples in the intersection of the expression, 27K
methylation, 450K methylation, and mutation datasets, which we used for subsequent analyses. The
most frequent missing data types were somatic mutation data (1,114 samples) and 450K methylation
data (1,072 samples) (Figure 3A).

For many genes, predictions are better than our baseline model where labels are permuted (values
greater than 0 in the box plots), suggesting that there is considerable predictive signal in both
expression and methylation datasets across the cancer-related gene set (Figure 3B). On aggregate
across all genes, predictive performance is best overall for gene expression. Both before and after
�ltering for genes that exceed the signi�cance threshold, gene expression with raw gene features
provides a signi�cant performance improvement relative to the 27K methylation and 450K
methylation datasets (Figure 3B-C). Results were similar with PCA-compressed gene expression
features or raw CpG probes as predictors (Additional File 1: Fig. S5).

Considering each target gene in the cancer-related gene set individually, we observed that 113/272
genes signi�cantly outperformed the permuted baseline using gene expression data, as compared to
62/272 genes for 27K methylation and 77/272 genes for 450K methylation (Figure 3D-F, more
information about speci�c genes in Additional File 1: Fig. S2). Some “well-predicted” genes that
outperformed the permuted baseline tended to be similar between data types (Figure 3D-F; genes in
the top right of each plot). For example, CIC appears in the top right of all 3 plots, and CCND1 appears
in the top right of the gene expression and 450K methylation plots, suggesting that mutations in these
genes have strong gene expression and DNA methylation signatures, and these signatures tend to be
preserved across cancer types.

In addition to comparing mutation classi�ers trained on di�erent data types to the permuted
baseline, we also compared classi�ers trained on true labels directly to each other, for genes that
performed signi�cantly better than the baseline for both of the data types under consideration (Figure
3G-H). We observed that 18/58 genes were signi�cantly more predictable from expression data than
27K methylation data, and 21/69 genes were signi�cantly more predictable from expression data than
450K methylation data. In both cases, no genes were signi�cantly more predictable using the
methylation data types. Still, we observed that some points were clustered around the origin,
indicating that the data types appear to confer similar information about mutation status. That is, in
these cases, matching the gene being studied with the “correct” data modality seems to be
unimportant: mutation status has a strong signature which can be extracted from both expression
and DNA methylation data roughly equally.

We additionally compared pan-cancer survival prediction performance using principal components
derived from each data type; in general, results were comparable across the three data types (Figure
3I). All data types outperformed the covariate-only baseline (see Methods) for lower numbers of PC
features included, although performance was similar to the baseline for higher numbers of PCs.
Con�dence intervals between the best- and worst-performing data types overlap at most PC counts
(with the exception of gene expression at 5,000 PC features), suggesting that similarly to mutation
prediction, the three data types tend to have comparable e�ectiveness for pan-cancer survival
prediction.



Figure 3:  A. Count of overlapping samples between gene expression, 27K methylation, 450K methylation, and somatic
mutation data used from TCGA. Only non-zero overlap counts are shown. Somatic mutation sample information is
included because it is needed to generate the mutation presence/absence labels. B. Predictive performance for genes in
the cancer-related gene set, using each of the three data types as predictors. The gene expression predictor uses the
top 8000 gene features by mean absolute deviation, and the methylation predictors use the top 5000 principal
components as predictive features. Signi�cance stars indicate results of Bonferroni-corrected pairwise Wilcoxon tests:
**: p < 0.01, ***: p < 0.001, ns: not statistically signi�cant for a cuto� of p = 0.05. C. Predictive performance for genes
where at least one of the considered data types predicts mutation labels signi�cantly better than the permuted
baseline. D-F. Predictive performance for each gene in the cancer-related gene set, for each data type, compared with a
baseline model trained on permuted labels. G-H. Direct comparison of performance using gene expression and each
methylation dataset, for genes that perform signi�cantly better than the baseline for both data types. Points (genes) to
the left of y=0 perform better using gene expression-derived features, and points to the right perform better using
methylation-derived features. I. Pan-cancer survival prediction performance, quanti�ed using c-index on the y-axis, for
gene expression, 27K methylation, and 450K methylation. The x-axis shows results with varying numbers of principal
components included for each data type. Models also included covariates for patient age, sample mutation burden, and
sample cancer type; grey dotted line indicates mean performance for a covariate-only baseline model.

Focusing on several selected genes of interest, we observed that relative classi�er performance varies
by gene (Figure 4). Past work has indicated that mutations in TP53 are highly predictable from gene
expression data [11], and we observed that the methylation datasets provided similar predictive
performance (Figure 4A). Similarly, for IDH1 both expression and methylation features result in similar
performance, consistent with the previously observed role of IDH1 in regulating both DNA
methylation and gene expression (Figure 4D) [37]. Mutations in KRAS and ERBB2 (HER2) were most
predictable from gene expression data, and in both cases the methylation datasets signi�cantly
outperformed the baseline as well (Figure 4B and 4E). Gene expression signatures of ERBB2
alterations are historically well-studied in breast cancer [38], and samples with activating ERBB2
mutations have recently been shown to share sensitivities to some small-molecule inhibitors across



cancer types [39]. These observations are consistent with the pan-cancer ERBB2 mutant-associated
expression signature that we observed in this study. NF1 mutations were also most predictable from
gene expression data, although the gene expression-based NF1 mutation classi�er did not
signi�cantly outperform the baseline with permuted labels at a cuto� of  (Figure 4C). SETD2
is an example of a gene that is more predictable from the methylation datasets than from gene
expression, although gene expression with raw gene features signi�cantly outperformed the
permuted baseline as well (Figure 4F). SETD2 is widely mutated across cancer types and a�ects H3K36
histone methylation most directly, but SETD2-mediated changes in H3K36 methylation have been
linked to dysregulation of diverse cellular processes including DNA methylation and RNA splicing [23,
40].

Figure 4:  Performance across varying PCA dimensions for speci�c genes of interest. Dotted lines represent results for
“raw” features (8,000 gene features for gene expression data and 8,000 CpG probes for both methylation datasets,
selected by largest mean absolute deviation). Error bars and shaded regions show bootstrapped 95% con�dence
intervals. Stars in boxes show statistical testing results compared with permuted baseline model; each box refers to the
model using the number of PCA components it is over (far right box = models with raw features). **: p < 0.01, ***: p <
0.001, no stars: not statistically signi�cant for a cuto� of p = 0.05.

Comparing six di�erent readouts favors expression and DNA
methylation

Next, we expanded our comparison to all �ve functional data modalities (six total readouts, since
there are two DNA methylation platforms) available in the TCGA Pan-Cancer Atlas. As with previous
experiments, we limited our comparison to the set of samples pro�led for each readout, resulting in
5,226 samples with data for all readouts. The data types with the most missing samples were RPPA
data (2,215 samples that were missing RPPA data) and 450K methylation (630 samples that were
missing 450K methylation data) (Figure 5A). Summarized over all genes in the cancer-related gene set,
we observed that gene expression tended to produce better predictions than the other data types
(Figure 5B). This remained true when we looked only at the set of genes having at least one signi�cant
predictor (i.e. “well-predicted” genes) (Figure 5C).

On the individual gene level, mutations in 33/217 genes were signi�cantly predictable from RPPA data
relative to the permuted baseline, compared to 25/217 genes from microRNA data and 2/217 genes
from mutational signatures data (Figure 5D-F). For the remaining data types on this smaller set of
samples, 79/217 genes outperformed the baseline for gene expression data, 31/217 for 27k
methylation, and 42/217 for 450k methylation. Compared to the methylation experiments (Figure 3),
we observed fewer “well-predicted” genes for the expression and methylation datasets here (likely

α = 0.001



due to the considerably smaller sample size) but relative performance was comparable (Additional File
1: Fig. S3). Direct comparisons between each added data type and gene expression data showed that
for most “well-predicted” genes, RPPA, microRNA and mutational signatures data generally provide
similar or worse performance compared to gene expression (Figure 5G-I).

Performance using RPPA data (Figure 5G) is notable because of its drastically smaller dimensionality
than the other data types (190 proteins, compared to thousands of features for the expression and
methylation data types). This suggests that each protein abundance measurement provides a high
information content, although this is by design as the antibody probes used for the TCGA analysis
were selected to cover established cancer-related pathways [41]. Similarly, the scope of the features
captured by the mutational signatures data we used is limited to single-base substitution signatures; a
broader spectrum of possible signatures is described in previous work [26, 42] including doublet-
substitution signatures, small indel signatures, and signatures of structural variation, but these were
not readily available for the TCGA exome sequencing data. The relatively poor predictive ability of
mutational signatures likely stems from a combination of biological and technical factors, as there is
no reason to expect that changes in somatic mutation patterns would be directly caused by most
cancer driver mutations. Two exceptions are KMT2C and KMT2D (Figure 5F), which may have a role in
mediating DNA damage response [43].

As in the expression/methylation comparison, we also compared pan-cancer survival prediction
performance between all six readouts, using the top principal components derived from each data
type to ensure comparable information content (Figure 5J). All six readouts performed comparably for
this smaller set of samples, with slightly better performance across PC feature dimensions for the
450K methylation array. The covariate-only baseline predictor performed considerably worse than it
did in the expression/methylation comparisons, with all -omics data types outperforming the baseline
predictor at all PC numbers.



Figure 5:  A. Overlap of TCGA samples between all data types used in mutation prediction comparisons. Only overlaps
with more than 100 samples are shown. Somatic mutation sample information is included because it is needed to
generate the mutation presence/absence labels. B. Overall distribution of performance per data type across 217 genes
from the cancer-related gene set. Each data point represents mean cross-validated AUPR di�erence, compared with a
baseline model trained on permuted labels, for one gene; notches show bootstrapped 95% con�dence intervals.
Signi�cance stars indicate results of Bonferroni-corrected pairwise Wilcoxon tests: **: p < 0.01, ***: p < 0.001, ns: not
statistically signi�cant for a cuto� of p = 0.05. All pairwise tests were run, and corrected for, but only neighboring test
results are shown. C. Overall performance distribution per data type for genes where the permuted baseline model is
signi�cantly outperformed for one or more data types, resulting in a total of 39 genes. D, E, F. Volcano-like plots showing
predictive performance for each gene in the cancer-related gene set, in each of the added data types (RPPA, microRNA,
mutational signatures). The x-axis shows the di�erence in mean AUPR compared with a baseline model trained on
permuted labels, and the y-axis shows p-values for a paired t-test comparing cross-validated AUPR values within folds.
G, H, I. Direct comparison of performance using gene expression and each added data type, showing only genes that
perform signi�cantly better than the baseline model for both data types. Points (genes) to the left of y=0 perform better
using gene expression-derived features, and points to the right perform better using the added data type (RPPA,
microRNA, and mutational signatures respectively). J. Pan-cancer survival prediction performance, quanti�ed using c-
index on the y-axis, for all data types. The x-axis shows results with varying numbers of principal components included



for each data type. Models also included covariates for patient age, sample mutation burden, and sample cancer type;
grey dotted line indicates mean performance for a covariate-only baseline model.

When we constructed a heatmap depicting predictive performance for each gene across data types,
we found that many genes tended to be well-predicted by more than one data type (Figure 6). Of the
86 genes that are well-predicted using at least one data type (grey circles in Figure 6), 52/86 (60.5%)
are well-predicted by multiple data types, meaning that multiple -omics readouts contain a detectable
signature of presence/absence of a mutation in the corresponding gene. Of the remaining 34 genes,
28/34 (82.4%) are well-predicted by gene expression alone. This supports our observation that in a
surprising number of cases, choosing the “correct” data modality is unimportant for driver genes with
strong functional signatures, although gene expression may be the best “default” choice as it tends to
be a strong predictor in the majority of cases. Exceptions included ERBB4, KMT2A, PIK3R1, and RPL22
(only well-predicted using RPPA data), FAT4 (only well-predicted using microRNA data), and KDM6A
(only well-predicted using 450K methylation data).

Figure 6:  Heatmap displaying predictive performance for mutations in each of the 217 genes from the cancer-related
gene set, across all six TCGA data modalities. Each cell quanti�es performance for a target gene, using predictive
features derived from a particular data type. Grey shaded dots indicate that the given data type provides signi�cantly
better predictions than the permuted baseline for the given gene; black inner dots indicate the same and additionally
that the given data type provides statistically equivalent performance to the data type with the best average
performance (determined by pairwise t-tests across data types with FDR correction).

Simple multi-omics integration provides little performance bene�t

We also trained “multi-omics” classi�ers to predict mutations in six well-studied and widely mutated
driver genes across various cancer types: EGFR, IDH1, KRAS, PIK3CA, SETD2, and TP53. Each of these
genes is well-predicted from several data types in our earlier experiments (Figure 6), consistent with
having strong pan-cancer driver e�ects. For the multi-omics classi�ers, we considered all pairwise
combinations of the top three performing individual data types (gene expression, 27K methylation,
and 450K methylation), in addition to a model using all three data types. We trained a classi�er for
multiple data types by concatenating features from the individual data types, then �tting the same
elastic net logistic regression model as we used for the single-omics models. Here, we show results
using the top 5,000 principal components from each data type as predictive features, to ensure that
feature count and scale is comparable among data types; results for raw features are shown in
Additional File 1: Fig. S6. We additionally ran the same experiments using a 3-layer fully-connected



neural network for classi�cation, with principal components as input, and results are shown in
Additional File 1: Fig. S7. In general, we found predictions using elastic net logistic regression to be
more robust across cross-validation folds and hyperparameter choices than predictions using the
neural network, although the neural network provided a slight performance improvement using
multiple -omics types for some genes.

For each of the six target genes, we observed comparable performance between the best single-omics
classi�er (blue boxes in Figure 7A) and the best multi-omics classi�er (orange boxes in Figure 7A).
Across all classi�ers and data types, we found varied patterns based on the target gene. For IDH1 and
TP53 performance is relatively consistent regardless of data type(s), suggesting that baseline
performance is high and there is little room for improvement as data is added (Figure 7C, G). The TP53
classi�er using raw features showed a statistically signi�cant improvement when multiple data types
were integrated, although the di�erence in mean performance was relatively small (Additional File 1:
Fig. S6, p=0.0078). For EGFR, KRAS, and PIK3CA, combining gene expression with methylation data
results in statistically equivalent or worse performance to gene expression alone; classi�ers trained
only on methylation data generally do not perform as well as those that integrate expression data
(Figure 7B, D, E). Previously, we saw that the best classi�ers for SETD2 used methylation data alone
(Figure 6). When we added multiple data types to our SETD2 classi�er, we did observe an increase in
performance (Figure 7F), although this improvement was not statistically signi�cant in a paired-sample
t-test for =0.05 (p=0.078). Overall, we observed that combining data types in a relatively simple
manner, by concatenating features from each individual data type, provided little or no improvement
in predictive ability over the best individual data type. This supports our earlier observations of the
redundancy of gene expression and methylation data as functional readouts, since our multi-omics
classi�ers are not in general able to extract gains in predictive performance as more data types are
added for this set of cancer drivers.

α



Figure 7:  A. Comparing the best-performing model (i.e. highest mean AUPR relative to permuted baseline) trained on a
single data type against the best “multi-omics” model for each target gene. None of the di�erences between single-
omics and multi-omics models were statistically signi�cant using paired-sample Wilcoxon tests across cross-validation
folds, for a threshold of 0.05. B-G. Classi�er performance, relative to baseline with permuted labels, for mutation
prediction models trained on various combinations of data types. Each panel shows performance for one of the six
target genes; box plots show performance distribution over 8 evaluation sets (4 cross-validation folds x 2 replicates).

Discussion

We carried out a large-scale comparison of data types in the TCGA Pan-Cancer Atlas as functional
readouts of genetic alterations in cancer, integrating results across cancer types and across driver
genes. Overall, we found that gene expression captures signatures of mutation state most e�ectively
in general, relative to a baseline model, but we saw that for many genes other data types could be
equally e�ective at predicting mutation presence or absence. For pan-cancer survival prediction, we
found that the functional readouts tended to be similarly e�ective, outperforming a simple baseline
using age and sample mutation burden in most cases. Our multi-omics modeling experiment



indicated that the mutation state information captured by gene expression and DNA methylation is
highly redundant, as added data types resulted in no gain or modest gains in classi�er performance.

Comparing mutation status prediction using raw and PCA compressed expression and DNA
methylation data, we observed that feature extraction using PCA provided no bene�t compared to
using raw gene or CpG probe features. Other studies using DNA methylation array data have found
that nonlinear dimension reduction methods, such as variational autoencoders and capsule networks,
can be e�ective for extracting predictive features [44, 45]. The latter approach is especially interesting
because capsule networks and “capsule-like methods” can be constrained to extract features that
align with known biology (i.e. that correspond to known disease pathways or CpG site annotations).
This can improve model interpretability as well as predictive performance. Similar methods have been
applied to extract biologically informed features from gene expression data (see, for instance, [46,
47]). A more comprehensive study of dimension reduction methods in the context of mutation
prediction, including the features selected by these methods and their biological relevance and
interpretation, would be a bene�cial area of future work. In addition to methods for extracting
features, another aspect of the study that could be explored further is methods for labeling samples
as mutated or not more e�ciently. Although the mutation calls we used from MC3 represent the
consensus of multiple algorithms aggregated through a standard pipeline, benchmarking other
methods for identifying mutated samples could improve the utility of our method, such as calling
mutations directly from RNA-seq data to avoid the need for paired samples [48, 49].

In contrast to many other studies demonstrating the bene�ts of integrating multiple -omics data types
for various cancer-related prediction problems [50–54], we found that combining multiple data types
to predict mutation status was generally not e�ective for this problem. The method we used to
integrate di�erent data types by concatenating feature sets is sometimes referred to as “early” data
integration (discussed in more detail in [55] and [56]). It is possible that more sophisticated data
integration methods, such as “intermediate” integration methods that learn a set of features jointly
across datasets, would produce improved predictions. We do not interpret our results as concrete
evidence that multi-omics integration is not e�ective for this problem; rather, we see them as an
indication that this is a challenging data integration problem for which further investigation is needed.
We also present this problem as a set of benchmark tasks on which multi-omics integration methods
can be evaluated. In addition to the methodological questions, the issue of data integration also has
implications for the underlying biology: a more nuanced understanding of when di�erent data
readouts provide redundant information, and when they can contribute unique information about
cancer pathology and development, could have many translational applications.

One limitation of the current study is that, for the mutation prediction problem, we only evaluated
classi�ers that were trained on pan-cancer data. Considering every possible combination of target
gene and TCGA cancer type (85 target genes x 33 cancer types x 6 data types) would have drastically
increased the computational load and presented a large multiple testing burden. Alternatively,
choosing only a subset of gene/cancer type combinations to study would have biased our results
toward known driver gene/cancer type relationships, which we aimed to avoid. In future work it would
be interesting to identify classi�ers that perform well in a certain cancer type but not in the pan-
cancer context and to compare these instances across di�erent cancer types. As a motivating
example, other studies have shown that activating mutations in Ras isoforms (HRAS, KRAS, NRAS) tend
to have similar e�ects to one another in thyroid cancer, producing similar gene expression signatures
[15]. In multiple myeloma, however, activating KRAS and NRAS mutations produce distinct expression
signatures, necessitating separate classi�ers [57]. A high-throughput computational pipeline to
identify cases where functional signatures of a particular cancer driver are either concordant or
discordant between cancer types could identify opportunities for context-speci�c protein function
prediction, improve biomarker identi�cation, and suggest cases where drugs targeting speci�c
alterations might produce discordant results in di�erent cancer types.



As with any study relying on observational, cross-sectional data such as the TCGA Pan-Cancer Atlas,
the conclusions that we can draw are limited by the data. In particular, for any of our “well-predicted”
genes (i.e. genes that, when mutated, have strong signatures in one or more data types), we cannot
de�nitively distinguish correlation from causation. To directly assess the e�ects of particular
mutations on various data modalities, some studies use cell line data from sources such as the Cancer
Cell Line Encyclopedia (CCLE) [58]. While this approach could help to isolate the causal e�ect of a given
mutation on a given cell line, cell lines are sometimes an imperfect match for the cancers they are
derived from [59]. We are also limited in that we cannot assign timing or clonal status to mutations, or
fully characterize intratumor heterogeneity, with certainty from the bulk sequencing data generated
by TCGA (although some features of tumor mutational processes over time can be estimated from
bulk data, e.g. [60]). As methods for generating large longitudinal datasets at single-cell resolution
mature and scale, we will need to revise the way we think about cellular function and dysregulation in
cancer cells, as dynamic and adaptive processes rather than a single representative snapshot of a
tumor.

Conclusions

Based on our results, for studies focused on the functional consequences of cancer mutations, we
recommend that researchers cancers prioritize downstream readouts based on the gene or genes of
interest (Figure 6). On balance, prediction of mutation status is best in general using gene expression
data, and prediction of patient survival is similar for all data types in the study. However, the �nding
that for many genes, multiple functional pro�les contain much of the same information will be useful
for some study designs, given varying cost and stability of di�erent readouts. In addition to gene
expression, results using DNA methylation and RPPA measurements as predictive features were
promising, especially considering the substantially lower dimensionality of the RPPA dataset
compared to other data types. It is important to note that the speci�c technologies chosen by TCGA,
and the tradeo�s inherent in such a high-throughput study, could in�uence the comparison: it is
possible that, for instance, another technology for measuring DNA methylation (such as bisul�te
sequencing) or another technique for measuring protein abundance (such as mass spectrometry-
based proteomics) could change performance for those data types. Future technology advances, in
both quality and quantity of data, are likely to improve our understanding of the full picture of
functional consequences of mutations in cancer cells.

Methods

Mutation data download and preprocessing

To generate binary mutated/non-mutated gene labels for our machine learning model, we used
mutation calls for TCGA samples from MC3 [61] and copy number threshold calls from GISTIC2.0 [62].
MC3 mutation calls were downloaded from the Genomic Data Commons (GDC) of the National Cancer
Institute, at https://gdc.cancer.gov/about-data/publications/pancanatlas . Copy
number threshold calls are from an older version of the GDC data, and are available here: 
https://figshare.com/articles/dataset/TCGA_PanCanAtlas_Copy_Number_Data/614412
2 . We removed hypermutated samples (de�ned as �ve or more standard deviations above the mean
non-silent somatic mutation count) from our dataset to reduce the number of false positives (i.e., non-
driver mutations). After this �ltering, 9,074 TCGA samples with mutation and copy number data
remained. Any sample with a non-silent somatic variant in the target gene was included in the positive
set. We also included copy number gains in the target gene for oncogenes and copy number losses in
the target gene for tumor suppressor genes in the positive set; all remaining samples were considered
negative for mutation in the target gene.

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://figshare.com/articles/dataset/TCGA_PanCanAtlas_Copy_Number_Data/6144122


Omics data download and preprocessing

RNA sequencing, 27K and 450K methylation array, microRNA, and RPPA datasets for TCGA samples
were all downloaded from GDC, at the same link provided above. Mutational signatures information
for TCGA samples with whole-exome sequencing data was downloaded from the International Cancer
Genome Consortium (ICGC) data portal, at 
https://dcc.icgc.org/releases/PCAWG/mutational_signatures/Signatures_in_Sample
s/SP_Signatures_in_Samples . For our experiments, we used only the “single base signature”
(SBS) mutational signatures, generated in [26]. In general, before training classi�ers or extracting PCA
components from all of the data types, we standardized (took z-scores of) each column/feature of all
data types. For the RNA sequencing dataset, we generally used only the top 8,000 gene features by
mean absolute deviation as predictors in our single-omics models, except where speci�ed otherwise.
For the RPPA, microRNA, and mutational signatures datasets, all columns/features were used.

To remove missing values from the methylation datasets, we removed the 10 samples with the most
missing values, then performed mean imputation for probes with 1 or 2 values missing. All probes
with missing values remaining after sample �ltering and imputation were dropped from the analysis.
This left us with 20,040 CpG probes in the 27K methylation dataset and 370,961 CpG probes in the
450K methylation dataset. For experiments where “raw” methylation data was used, we used the top
100,000 probes in the 450K dataset by mean absolute deviation for computational e�ciency, and we
used all of the 20,040 probes in the 27K dataset. For experiments where “compressed” methylation
data was used, we used principal component analysis (PCA), as implemented in the scikit-learn
Python library [63], to extract the top 5,000 principal components from the methylation datasets. We
initially applied the beta-mixture quantile normalization (BMIQ) method [64] to correct for variability
in signal intensity between type I and type II probes, but we observed that this had no e�ect on our
results. We report uncorrected results in the main paper for simplicity.

Construction of a set of cancer genes

To get a comprehensive picture of classi�cation performance across a wide variety of cancer-related
genes, we integrated several curated gene sets from the literature into a single “merged” cancer gene
set. The individual gene sets we integrated were from Vogelstein et al. [34] (all genes from Table S2A),
Bailey et al. [35] (only genes annotated as “pan-cancer” drivers in Table S1), and the COSMIC Cancer
Gene Census [36] (all Tier 1 genes annotated as “somatic”). In addition, the COSMIC CGC dataset
contains 3 possible “roles in cancer” for each gene: oncogene, TSG, and fusion gene; for this analysis
we dropped genes that are annotated only as fusion genes (i.e. no oncogene or TSG annotation).
These �lters resulted in a starting dataset of 511 cancer-related genes, which we reduced further for
each experiment based on the number of mutated (i.e. positively labeled) samples as described in the
next section.

Comparing data modalities

We made three main comparisons in this study: one between di�erent sets of genes using only
expression data, one comparing expression and DNA methylation data types, and one comparing all
data types. This choice in comparisons was mainly due to sample size limitations, as running a single
comparison using all data types would force us to use only samples that are pro�led for every data
type, which would discard a large number of samples that lack pro�ling on only one or a few data
types. Thus, for each of the three comparisons, we used the intersection of TCGA samples having
measurements for all of the datasets being compared in that experiment. This resulted in three
distinct sets of samples: 9,074 samples shared between {expression, mutation} data, 7,981 samples
shared between {expression, mutation, 27K methylation, 450K methylation}, and 5,226 samples
shared between {expression, mutation, 27K methylation, 450K methylation, RPPA, microRNA,

https://dcc.icgc.org/releases/PCAWG/mutational_signatures/Signatures_in_Samples/SP_Signatures_in_Samples


mutational signatures}. When we dropped samples between experiments as progressively more data
types were added, we observed that the dropped samples had approximately the same cancer type
proportions as the dataset as a whole. In other words, samples that were pro�led for one data type
but not another did not tend to come exclusively from one or a few cancer types. Exceptions included
acute myeloid leukemia (LAML) which had no samples pro�led in the RPPA data, and ovarian cancer
(OV) which had only 8 samples with 450K methylation data. More detailed information on cancer type
proportions pro�led for each data type is provided in Additional File 1: Fig. S1 and Additional File 2.

For each target gene, in order to ensure that the training dataset was reasonably balanced (i.e. that
there would be enough mutated samples to train an e�ective classi�er), we included only cancer
types with at least 15 mutated samples and at least 5% mutated samples, which we refer to here as
“valid” cancer types. After applying these �lters, the number of valid cancer types remaining for each
gene varied based on the set of samples used: more data types resulted in fewer shared samples, and
fewer samples generally meant fewer valid cancer types. In some cases, this resulted in genes with no
valid cancer types, which we dropped from the analysis. Out of the 511 genes from the “merged”
cancer gene set described in the previous section, for the analysis using {expression, mutation} data
we retained 268 target genes, for the {expression, mutation, 27k methylation, 450k methylation}
analysis we retained 272 genes, and for the analysis using all data types we retained 217 genes.

We additionally explored mutation prediction from gene expression alone using three gene sets of
equal size: the cancer-related genes from the merged dataset described previously, a set of frequently
mutated genes in TCGA, and a set of random genes with mutations pro�led by MC3. To match the size
of the merged cancer gene set, we took the 268 most frequently mutated genes in TCGA as quanti�ed
by MC3, all of which had at least one valid cancer type. For the random gene set, we �rst �ltered to
the set of all genes with one or more valid cancer types by the same criteria (15 total samples mutated
and at least 5% of samples mutated), then sampled 268 of the resulting 1,348 genes uniformly at
random. Based on the results of the gene expression experiments, we used the merged cancer-
related gene set for all subsequent experiments comparing -omics data types.

Training classi�ers to detect cancer mutations

We trained logistic regression classi�ers to predict whether or not a given sample had a mutational
event in a given target gene using data from various -omics datasets as explanatory variables. Our
model was trained on -omics data ( ) to predict mutation presence or absence ( ) in a target gene. To
control for varying mutation burden per sample and to adjust for potential cancer type-speci�c
expression patterns, we included one-hot encoded cancer type and log10(sample mutation count) in
the model as covariates. Since our -omics datasets tend to have many dimensions and comparatively
few samples, we used an elastic net penalty to prevent over�tting [65] in line with the approach used
in Way et al. 2018 [9] and Way et al. 2020 [13]. Elastic net logistic regression �nds the feature weights 

 solving the following optimization problem:

where  denotes a sample in the dataset,  denotes features (omics
measurements) from the given sample,  denotes the label (mutation presence/absence)
for the given sample, and  denotes the negative log-likelihood of the observed data given a
particular choice of feature weights, i.e.
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This optimization problem leaves two hyperparameters to select:  (controlling the tradeo� between
the data log-likelihood and the penalty on large feature weight values), and  (controlling the tradeo�
between the L1 penalty and L2 penalty on the weight values). Although the elastic net optimization
problem does not have a closed form solution, the loss function is convex, and iterative optimization
algorithms are commonly used for �nding reasonable solutions. For �xed values of  and , we
solved for  using stochastic gradient descent, as implemented in scikit-learn ’s 
SGDClassifier  method.

Given weight values , it is straightforward to predict the probability of a positive label (mutation in
the target gene)  for a test sample :

and the probability of no mutation in the target gene, , is given by (1 - the above
quantity).

For each target gene, we evaluated model performance using two replicates of 4-fold cross-validation,
where train and test splits were strati�ed by cancer type and sample type. That is, each training
set/test set combination had equal proportions of each cancer type (BRCA, SKCM, COAD, etc.) and
each sample type (primary tumor, recurrent tumor, etc.). To choose the elastic net hyperparameters,
we used 3-fold nested cross-validation, with a grid search over the following hyperparameter ranges: 

 = [0.0, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] and  = [0.0001, 0.001, 0.01, 0.1, 1, 10]. Using the grid search
results, for each evaluation fold we selected the set of hyperparameters with the optimal area under
the precision-recall curve (AUPR), averaged over the three inner folds.

Evaluating mutation prediction classi�ers

Area under the receiver-operator curve (AUROC) [66] and area under the precision-recall curve (AUPR)
[67] are metrics that are frequently used to quantify classi�cation performance for a continuous or
probabilistic output, such as that provided by logistic regression. These metrics summarize
performance across a variety of binary label thresholds, rather than requiring choice of a single
threshold to determine positive or negative predictions. In the main text, we report results using
AUPR, summarized using average precision. AUPR has been shown to distinguish between models
more accurately than AUROC when there are few positively labeled samples [68, 69]. As an additional
correction for imbalanced labels, in many of the results in the main text we report the di�erence in
AUPR between a classi�er �t to true mutation labels and a classi�er �t to data where the mutation
labels are randomly permuted. In cases where mutation labels are highly imbalanced (very few
mutated samples and many non-mutated samples), a classi�er with permuted labels may perform
well simply by chance, e.g. by predicting the negative/non-mutated class for most samples. To
maintain the same label balance for the classi�ers with permuted labels as the classi�ers with the true
labels, we permuted labels separately in the train and test sets for each cross-validation split.
Additionally, to maintain the same label proportions within each cancer type after permuting the
labels, we permuted labels independently for each cancer type.

Recall that for each target gene and each -omics dataset, we ran two replicates of 4-fold cross-
validation, for a total of eight performance results. To make a statistical comparison between two
models using these performance distributions, we used paired-sample t-tests, where performance
measurements derived from the same cross-validation fold are considered paired measurements. We
used this approach to compare a model trained on true labels with a model trained on permuted
labels (addressing the question, “for the given gene using the given data type, can we predict mutation
status better than random”), and to compare a model trained on data type A with a model trained on
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1

1 + e−ŵ⊤X∗
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data type B (addressing the question, “for the given gene, can we make more e�ective mutation status
predictions using data type A or data type B”).

We corrected for multiple tests using a Benjamini-Hochberg false discovery rate correction. For
experiments where we chose a binary threshold for accepting/rejecting  we set a conservative
corrected threshold of ; we were able to estimate the number of false positives by
examining genes with better performance for permuted mutation labels than true labels. We chose
this threshold to ensure that none of the observed false positive genes were considered signi�cant,
since we would never expect permuting labels to improve performance. However, our results were
not sensitive to the choice of this threshold, and we display cuto�s of  and  in many
of our plots as well.

Survival prediction using -omics datasets

As a complementary comparison to mutation prediction, we constructed predictors of patient survival
using the clinical data available from the GDC, in the TCGA-CDR-SupplementalTableS1.xlsx  �le.
Following the methods described in [70], as the clinical endpoint we used overall survival (OS), except
in nine cancer types with few deaths observed where we used progression-free intervals (PFI) as the
clinical endpoint (BRCA, DLBC, LGG, PCPG, PRAD, READ, TGCT, THCA and THYM). For prediction, we
used Cox regression as implemented in the scikit-survival  Python package [71], with patient
age at diagnosis and log10(sample mutation count) included as covariates, as well as a one-hot
encoded variable for cancer type in the pan-cancer case. To ensure that the per-feature information
content was comparable between -omics data types, we preprocessed the -omics datasets using PCA
and extracted the top  principal components; in the case where the number of features in the
original dataset was less than  we used all available PCs (that is, we set  where  is the
number of features in the unprocessed dataset). For the pan-cancer models we plot results over
multiple values of : ; for the individual cancer type models we set 

.

To model pan-cancer survival (results shown in main paper), we used the elastic net Cox regression
implementation in scikit-survival  (i.e. the CoxnetSurvivalAnalysis  method). To select
hyperparameters for the elastic net Cox regression model, we performed a grid search over  = [0.0,
0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] and  = [0, 1e-5, 1e-4, 5e-4, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10, 100,
1000]. To select the regularization parameter , we used the default selection procedure
implemented in scikit-survival  to determine a range of potential  values based on the data.
This procedure begins by deriving the maximum  value as the smallest value for which all
coe�cients are 0 (call this ), then it selects 100 possibilities for alpha spaced evenly on a log scale
between  and . We found that for individual cancer types, this data-driven procedure
resulted in more consistent and stable model convergence than choosing a �xed set of alphas to
search over as in the pan-cancer survival prediction experiments.

We measured survival prediction performance using the censored concordance index (c-index) [72],
which quanti�es agreement between the order of survival time predictions and true outcomes for a
held-out dataset; higher c-index values indicate more accurate survival prediction performance.
Similar to the mutation prediction experiments, we calculated c-index values on held-out subsets of
the data for two replicates of 4-fold cross-validation, resulting in eight performance measurements for
each model. As a baseline, for both the pan-cancer and cancer type speci�c datasets, we constructed
survival models using only non-omics covariates. For the pan-cancer data, covariates included patient
age at diagnosis, log10(sample mutation count), and a one-hot encoded variable for sample cancer
type. The cancer type-speci�c baseline models were the same, without the cancer type indicator, since
all train and test samples were derived from the same cancer type.
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Multi-omics mutation prediction experiments

To predict mutation presence or absence in cancer genes using multiple data types simultaneously,
we concatenated individual datasets into a large feature matrix, then used the same elastic net logistic
regression method described previously. For this task, we considered only the gene expression, 27K
methylation, and 450K methylation datasets. We used only these data types to limit the number of
multi-omics combinations; the expression and methylation datasets resulted in the best overall
performance across the single-omics experiments, so we limited combinations to those datasets. In
the main text, we report results using the top 5,000 principal components for each dataset , which
ensures that most variance is captured (approximately 95-98% of variance for each data type). In
Additional File 1: Fig. S6, we also report results using “raw” features: for gene expression we used all
15,639 genes available in our RNA sequencing dataset, and for the 27K and 450K methylation datasets
we used the top 20,000 CpG probes by mean absolute deviation.

To construct the multi-omics models, we considered each of the pairwise combinations of the
datasets listed above, as well as a combination of all 3 datasets. When combining multiple datasets,
we concatenated along the column axis and included covariates for cancer type and sample mutation
burden as before. For all multi-omics experiments, we used only the samples from TCGA with data for
all three data types (i.e. the same 7,981 samples used in the single-omics experiments comparing
expression and methylation data types). We considered a limited subset of well-performing genes
from the merged cancer gene set as target genes, including EGFR, IDH1, KRAS, PIK3CA, SETD2, and
TP53. We selected these genes because we had previously observed that they have good predictive
performance and because they represent a combination of alterations that have strong gene
expression signatures (KRAS, EGFR, IDH1, TP53) and strong DNA methylation signatures (IDH1, SETD2,
TP53).

For the experiments predicting mutation status using a 3-layer fully connected neural network,
described in the Results section and Additional File 1: Fig. S7, we used the top 5,000 principal
components as input for each data type. We selected hyperparameters for each of the 8 outer cross-
validation splits using a single inner train/validation split and a random search over 20
hyperparameter combinations. The hyperparameter ranges that we sampled from in the random
search were: learning_rate: [0.1, 0.01, 0.001, 5e-4, 1e-4], h1_size: [1000, 500, 
250], dropout: [0.5, 0.75, 0.9], weight_decay: [0, 0.1, 1, 100] . Here, h1_size
refers to the size of the �rst hidden layer, and the size of the second hidden layer was always set to 
h1_size / 2 . As in the elastic net grid search, we chose the combination of hyperparameters with

the best AUPR on the validation set, and retrained the model with those hyperparameters to make
predictions on the test set. We trained our networks with the Adam optimizer [73], with ReLU
activation after the hidden layers and sigmoid activation to make predictions, and using binary cross-
entropy as the loss function as implemented in the PyTorch BCEWithLogitsLoss  function, through
the skorch  library which provides interoperability between PyTorch and scikit-learn.
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Availability of data and materials

The datasets analyzed during this study were previously published as part of the TCGA Pan-Cancer
Atlas project, and are publicly available from the NIH NCI Genomic Data Commons (GDC) [74]. The
mutational signatures dataset was downloaded from the ICGC Data Portal [75]. Scripts used to
download and preprocess the datasets for this study are available at 
https://github.com/greenelab/mpmp/tree/master/00_download_data .

All analyses were implemented in the Python programming language and are available at Zenodo [76]
and in the following GitHub repository: https://github.com/greenelab/mpmp  [77] under the
open-source BSD 3-clause license. Scripts to download large data �les from GDC and other sources
are located in the 00_download_data  directory. Scripts to run experiments comparing data
modalities used individually are located in the 02_classify_mutations  directory, scripts to run
multi-omics experiments are located in the 05_classify_mutations_multimodal  directory, and
scripts to run survival prediction experiments are located in the 06_predict_survival  directory.
The Python environment was managed using conda , and directions for setting up the environment
can be found in the README.md  �le. Most analyses were run on the HTC CPU cluster at the University
of Pittsburgh, except the neural networks which were trained and evaluated on the PMACS LPC GPU
cluster at the University of Pennsylvania; scripts for training classi�ers both locally for a single gene
and on a Slurm cluster to reproduce the analysis of many genes in parallel are provided in the linked
GitHub repo. This manuscript was written using Manubot [78] and is available on GitHub at 
https://github.com/greenelab/mpmp-manuscript  under the CC0-1.0 license [79] and at

Zenodo [80].

As a data resource, coe�cients and hyperparameter choices for �nal models �t using all data types
are available on Figshare: coe�cients are available at 
https://doi.org/10.6084/m9.figshare.19576012  [81] and hyperparameters are at 
https://doi.org/10.6084/m9.figshare.19576048  [82]. File format/entries are described in

the supplementary material in Additional File 1.
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Additional Files

Additional File 1

All supplementary �gures and supplementary information.

Additional File 2

Number of samples from each TCGA cancer type that are “dropped” as more data types are added to
the analysis. The “base” column indicates the number of samples that are present per cancer type in
the �nal intersection of all data types (i.e. each sample counted in the last column has data for each of
the 7 data types, including gene expression (not listed here) and somatic mutations).
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Supplementary material for “Widespread redundancy in -omics
pro�les of cancer mutation states”

A version of the main paper �gures using the area under the receiver-operator curve (AUROC) metric
rather than AUPR is available at https://doi.org/10.6084/m9.figshare.14919729 .

In a previous version of this paper, we ran our analysis only for the genes in the Vogelstein et al. 2013
gene set. While there were some gene-to-gene di�erences in this set, we did not observe large
di�erences between methylation and gene expression performances overall. Scaling up the gene set
by combining cancer gene sets from the literature as described in the methods/results sections
a�ected the study results somewhat, as mutations in the added genes tend to be better predicted
using gene expression than other data types. During the revision, we explored the di�erence between
the genes in this gene set and the genes in the “merged” cancer-related gene set but not in the
Vogelstein genes. GO analysis results for the Vogelstein genes are available at 
https://doi.org/10.6084/m9.figshare.19565890 , and results for the non-Vogelstein genes

are available at https://doi.org/10.6084/m9.figshare.19565887 . We noticed that the non-
Vogelstein genes tend to be enriched for terms relating to transcription factors and transcriptional
regulation.

As a data resource, coe�cients and hyperparameter choices for �nal models �t using all data types
are available on Figshare: coe�cients are available at 
https://doi.org/10.6084/m9.figshare.19576012  and hyperparameters are at 
https://doi.org/10.6084/m9.figshare.19576048 . Columns in the coe�cients dataset

correspond to target genes (gene symbols), and rows correspond either to PCA components (for 27K
and 450K methylation), -omics features (for all other data types), or covariates (cancer type indicator
variables or log(mutation burden)). An ‘NA’ value in a cell indicates that feature was not used in the
model for the corresponding gene (for an -omics feature this could mean it was not in the top 8000
features by MAD, for a cancer type feature this means that cancer type was not included in the
training set based on our mutation �lters). A 0 value in a cell indicates that feature was included in
model training, but it was not selected by the elastic net feature selection algorithm. Columns in the
hyperparameters dataset correspond to hyperparameters (alpha and l1_ratio for elastic net logistic
regression) and rows correspond to target genes. For the methylation data types, PCA results (score
and loading matrices) corresponding to the coe�cients data are also available at 
https://doi.org/10.6084/m9.figshare.19908034 . These contain the top 5,000 principal

components for each data type, which were used in the classi�ers evaluated in the main paper.

Regarding the hyperparameters for the �nal models, recall that for the main �gures in the paper, we
evaluate each of our models using 2 replicates of 4-fold cross-validation. For each of these folds
(train/test splits), we further split the training set into train and validation sets to select
hyperparameters, independently for each fold, and evaluate the models on the test set to get the
results in the paper. Because we are evaluating performance over multiple folds, it is not perfectly
straightforward to get a single set of regression coe�cients, since we have a (potentially di�erent) set
of coe�cients for each cross-validation fold. In order to synthesize these results into a single model
for each gene in each data type, we selected one of the 8 sets of hyperparameters (from the 8 best
models, 1 per CV fold) at random, with probability proportional to performance (AUPR) on the
validation set used to select the hyperparameters, described above (so test set performance is not
used here). We then used the selected hyperparameters to train a single model on the entire dataset.
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Figure S1:  Proportion of samples from each TCGA cancer type that are “dropped” as more data types are added to our
analyses. We started with gene expression data, and for each added data type, we took the intersection of samples that
were pro�led for that data type and the previous data types, dropping all samples that were missing 1 or more data
types. Overall, at each step, the proportions of “dropped” samples appear to be fairly evenly spread between cancer
types, showing that in general we are not disproportionately losing one or several cancer types as more data modalities
are added to our analyses.

Figure S2:  Heatmap displaying predictive performance for mutations in each of the 272 genes from the cancer-related
gene set, across gene expression and the two DNA methylation arrays. Each cell quanti�es performance for a target
gene, using predictive features derived from a particular data type. Grey shaded dots indicate that the given data type
provides signi�cantly better predictions than the permuted baseline for the given gene; black inner dots indicate the
same and additionally that the given data type provides statistically equivalent performance to the data type with the
best average performance (determined by pairwise t-tests across data types with FDR correction).



Figure S3:  Volcano-like plots showing predictive performance for each gene in the cancer-related gene set for
expression and DNA methylation, on the sample set used for the “all data types” experiments. The �rst row shows
performance relative to the permuted baseline, and the second row shows direct comparisons between data types for
genes that outperformed the permuted baseline only for both data types. The x-axis shows the di�erence in mean
AUPR compared with a baseline model trained on permuted labels, and the y-axis shows p-values for a paired t-test
comparing cross-validated AUPR values within folds.

Figure S4:  Volcano-like plots showing predictive performance for each gene in the cancer-related gene set for all data
types, relative to the permuted baseline model, when genes are �ltered based on the entire dataset rather than by
cancer type. For this �ltering approach, we included/excluded entire genes rather than individual cancer types:
speci�cally, we trained a classi�er for each gene where all cancer types combined had at least 5% mutated samples and
at least 100 total mutated samples, resulting in 182 total classi�ers. The x-axis shows the di�erence in mean AUPR
compared with a baseline model trained on permuted labels, and the y-axis shows p-values for a paired t-test
comparing cross-validated AUPR values within folds. Counts of genes making the signi�cance threshold of 0.001: gene
expression 81/182 (44.5%), 27K methylation 16/182 (8.8%), 450K methylation 1/182 (0.6%), RPPA 41/182 (22.5%),
microRNA 25/182 (13.7%), mutational signatures 7/182 (3.9%).



Figure S5:  Predictive performance for genes in the cancer-related gene set, using each of the three data types as
predictors. The x-axis shows the number of PCA components used as features, “raw” = no PCA compression.



Figure S6:  Top plot: comparing the best-performing model (i.e. highest mean AUPR relative to permuted baseline)
trained on a single data type against the best “multi-omics” model for each target gene, using raw (not PCA compressed)
features. For feature parity between data types, the top 20,000 features by mean absolute deviation were used for each
data type. The di�erence between single-omics and multi-omics performance for TP53 was statistically signi�cant
(p=0.0078), but other di�erences between single-omics and multi-omics models were not statistically signi�cant using
paired-sample Wilcoxon tests across cross-validation folds, for a threshold of 0.05. Bottom plots: classi�er performance,
relative to baseline with permuted labels, for individual genes. Each panel shows performance for one of the six target
genes; box plots show performance distribution over 8 evaluation sets (4 cross-validation folds x 2 replicates).



Figure S7:  Top plot: comparing the best-performing model (i.e. highest mean AUPR relative to permuted baseline)
trained on a single data type against the best “multi-omics” model for each target gene, using a 3-layer fully-connected
neural network. The top 5,000 principal components were used as predictive features for each data type. The di�erence
between single-omics and multi-omics performance for PIK3CA (p = 0.0156, in favor of multi-omics) and TP53 (p =
0.0391, in favor of single-omics) were statistically signi�cant, but other di�erences between single-omics and multi-
omics models were not statistically signi�cant using paired-sample Wilcoxon tests across cross-validation folds, for a
threshold of 0.05. Bottom plots: comparison of classi�er performance between elastic net and fully-connected NN,
relative to baseline with permuted labels, for individual genes. Each panel shows performance for one of the six target
genes; box plots show performance distribution over 8 evaluation sets (4 cross-validation folds x 2 replicates).


