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Abstract

Knowledge graphs can support many biomedical applications. These graphs represent biomedical
concepts and relationships in the form of nodes and edges. In this review, we discuss how these
graphs are constructed and applied with a particular focus on how machine learning approaches are
changing these processes. Biomedical knowledge graphs have often been constructed by integrating
databases that were populated by experts via manual curation, but we are now seeing a more robust
use of automated systems. A number of techniques are used to represent knowledge graphs, but
often machine learning methods are used to construct a low-dimensional representation that can
support many di�erent applications. This representation is designed to preserve a knowledge graph’s
local and/or global structure. Additional machine learning methods can be applied to this
representation to make predictions within genomic, pharmaceutical, and clinical domains. We frame
our discussion �rst around knowledge graph construction and then around unifying representational
learning techniques and unifying applications. Advances in machine learning for biomedicine are
creating new opportunities across many domains, and we note potential avenues for future work with
knowledge graphs that appear particularly promising.

Introduction

Graphs are practical resources for many real-world applications. They have been used in social
network mining to classify nodes [1] and create recommendation systems [2]. They have also been
used in natural language processing to interpret simple questions and use relational information to
provide answers [3,4]. In a biomedical setting, graphs have been used to prioritize genes relevant to
disease [5,6,7,8], perform drug repurposing [9] and identify drug-target interactions [10].

Within a biomedical setting, some graphs can be considered knowledge graphs; although, precisely
de�ning a knowledge graph is di�cult because there are multiple con�icting de�nitions [11]. For this
review, we de�ne a biomedical knowledge graph as the following: a resource that integrates one or
more expert-derived sources of information into a graph where nodes represent biomedical entities
and edges represent relationships between two entities. This de�nition is consistent with other
de�nitions found in the literature [12,13,14,15,16,17,18]. Often relationships are considered
unidirectional (e.g., a compound treats a disease, but a disease cannot treat a compound); however,
there are cases where relationships can be considered bidirectional (e.g., a compound resembles
another compound, or a gene interacts with another gene). A subset of graphs that meet our
de�nition of a knowledge graph would be unsuitable for applications such as symbolic reasoning [19];
however, we chose a more liberal de�nition because it has been demonstrated that these broadly
de�ned graphs have numerous uses throughout the literature. For example, Hetionet (Figure 1) [9]
would be considered a biomedical knowledge graph by this de�nition, and it has been used to identify
drug repurposing opportunities [9]. We do not consider databases like DISEASES [20] and DrugBank
[21] to be knowledge graphs. Although these resources contain essential information, they do not
represent their data in the form of a graph.

Biomedical knowledge graphs are often constructed from manually curated databases
[9,10,22,23,24]. These databases provide previously established information that can be
incorporated into a graph. For example, a graph using DISEASES [20] as a resource would have genes
and diseases as nodes, while edges added between nodes would represent an association between a
gene and a disease. This example shows a single type of relationship; however, there are graphs that
use databases with multiple relationships [9,25]. In addition to manual curation, other approaches
have used natural language processing techniques to construct knowledge graphs [26,27]. One
example used a text mining system to extract sentences that illustrate a protein’s interaction with
another protein [28]. Once identi�ed, these sentences can be incorporated as evidence to establish
an edge in a knowledge graph.



In this review we describe various approaches for constructing and applying knowledge graphs in a
biomedical setting. We discuss the pros and cons of constructing a knowledge graph via manually
curated databases and via text mining systems. We also compare assorted approaches for applying
knowledge graphs to solve biomedical problems. Lastly, we conclude on the practicality of knowledge
graphs and point out future applications that have yet to be explored.

Figure 1:  The metagraph (i.e., schema) of the knowledge graph used in the Rephetio project [9]. The authors of this
project refer to their resource as a heterogenous network (i.e., hetnet), and this network meets our de�nition of a
knowledge graph. This resource depicts pharmacological and biomedical information in the form of nodes and edges.
The nodes (circles) represent entities and edges (lines) represent relationships that are shared between two entities. The
majority of edges in this metagraph are depicted as unidirectional, but some relationships can be considered
bidirectional.

Building Biomedical Knowledge Graphs

Knowledge graphs can be constructed in many ways using resources such as pre-existing databases
or text. Usually, knowledge graphs are constructed using pre-existing databases. These databases are



constructed by domain experts using approaches ranging from manual curation to automated
techniques, such as text mining. Manual curation is a time-consuming process that requires domain
experts to read papers and annotate sentences that assert a relationship. Automated approaches rely
on machine learning or natural language processing techniques to rapidly detect sentences of
interest. We categorize these automated approaches into the following groups: rule-based extraction,
unsupervised machine learning, and supervised machine learning and discuss examples of each type
of approach while synthesizing their strengths and weaknesses.

Constructing Databases and Manual Curation

Database construction dates back all the way to 1956 when the �rst database contained a protein
sequence of the insulin molecule [29]. The process of database construction involves gathering
relevant text such as journal articles, abstracts, or web-based text and having curators read the
gathered text to detect sentences that implicate a relationship (i.e., relationship extraction). Notable
databases constructed by this process can be in found in Table 1. An example database, COSMIC [30]
was constructed by a group of domain experts scanning the literature for key cancer related genes.
This database contained approximately 35M entries in 2016 [30] and by 2018 had grown to 45M
entries [31]. Studies have shown that databases constructed in this fashion contain relatively precise
data but the recall is low [32,33,34,35,36,37,38]. Low recall happens because the publication rate is
too high for curators to keep up [39]. This bottleneck highlights a critical need for future approaches
to scale fast enough to compete with the increasing publication rate.

Semi-automatic methods are a way to accelerate the curation process [36,40,41,42,43,44,45]. The
�rst step of these methods is to use an automated system to initially extract sentences from text. This
process removes irrelevant sentences, which dramatically decreases the amount of text that curators
must sift through. Following the pre-�ltering step, curators then approve or reject the remaining
sentences. This approach saved curators an average of 2-2.8 hours compared to manual e�orts
[40,46]. Despite automated systems excelling in identifying sentences for commonly occurring
relationships, they tend to miss lesser-known relationships [40]. These systems also have a hard time
parsing ambiguous sentences that naturally occur in text, which makes correcting them a challenging
task [40]. Given these caveats, future approaches should look into using techniques that simplify
sentences to solve the ambiguity issue [47,48].

Despite the negatives of manual curation, it is still an essential process for extracting relationships
from text. This process can be used to generate gold standard datasets that automated systems use
for validation [49,50] and can be used during the training process of these systems (i.e., active
learning) [51]. It is important to remember that manual curation alone is precise but results in low
recall rates [38]. Future databases should consider initially relying on automated methods to obtain
sentences at an acceptable recall level, then incorporate manual curation as a way to �x or remove
irrelevant results.

Table 1:  A table of databases that used a form of manual curation to populate entries. Reported number of entities
and relationships are relative to the time of publication.

Database
[Reference]

Short
Description

Number of
Entries Entity Types Relationship

Types
Method of
Population

BioGrid [52]

A database for
major model
organisms. It
contains genetic
and proteomic
information.

572,084 Genes, Proteins Protein-Protein
interactions

Semi-automatic
methods



Database
[Reference]

Short
Description

Number of
Entries Entity Types Relationship

Types
Method of
Population

Comparative
Toxicogenomics
Database [53]

A database that
contains
manually curated
chemical-gene-
disease
interactions and
relationships.

2,429,689
Chemicals
(Drugs), Genes,
Diseases

Drug-Genes,
Drug-Disease,
Disease-Gene
mappings

Manual curation
and Automated
systems

Comprehensive
Antibiotic
Resistance
Database [54]

Manually curated
database that
contains
information
about the
molecular basis
of antimicrobial
resistance.

174,443 Drugs, Genes,
Variants

Drug-Gene, Drug-
Variant mappings Manual curation

COSMIC [30]

A database that
contains high
resolution human
cancer genetic
information.

35,946,704 Genes, Variants,
Tumor Types

Gene-Variant
Mappings Manual Curation

Entrez-Gene [55]

NCBI’s Gene
annotation
database that
contains
information
pertaining to
genes, gene’s
organism source,
phenotypes etc.

7,883,114 Genes, Species
and Phenotypes

Gene-Phenotypes
and Genes-
Species mappings

Semi-automated
curation

OMIM [56]

A database that
contains
phenotype and
genotype
information

25,153 Genes,
Phenotypes

Gene-Phenotype
mappings Manual Curation

PharmGKB [57]

A database that
contains genetic,
phenotypic, and
clinical
information
related to
pharmacogenomi
c studies.

43,112

Drugs, Genes,
Phenotypes,
Variants,
Pathways

Gene-
Phenotypes,
Pathway-Drugs,
Gene-Variants,
Gene-Pathways

Manual Curation
and Automated
Methods

UniProt [58]

A protein-protein
interaction
database that
contains
proteomic
information.

560,823 Proteins, Protein
sequences

Protein-Protein
interactions

Manual and
Automated
Curation

Text Mining for Relationship Extraction

Rule-Based Relationship Extraction

Rule-based extraction consists of identifying essential keywords and grammatical patterns to detect
relationships of interest. Keywords are established via expert knowledge or through the use of pre-



existing ontologies, while grammatical patterns are constructed via experts curating parse trees.
Parse trees are tree data structures that depict a sentence’s grammatical structure and come in two
forms: a constituency parse tree (Figure 2) and a dependency parse tree (Figure 3). Both trees use
part of speech tags, labels that dictate the grammatical role of a word such as noun, verb, adjective,
etc., for construction, but represent the information in two di�erent forms. Constituency parse trees
break a sentence into subphrases (Figure 2) while dependency path trees analyze the grammatical
structure of a sentence (Figure 3). Many text mining approaches [59,60,61] use such trees to
generate features for machine learning algorithms and these approaches are discussed in later
sections. In this section we focus on approaches that use rule-based extraction as a primary strategy
to detect sentences that allude to a relationship.

Grammatical patterns can simplify sentences for easy extraction [48,62]. Jonnalagadda et al. used a
set of grammar rules inspired by constituency trees to reshape complex sentences with simpler
versions [48] and these simpli�ed versions were manually curated to determine the presence of a
relationship. By simplifying sentences, this approach achieved high recall, but had low precision [48].
Other approaches used simpli�cation techniques to make extraction easier [63,64,65,66]. Tudor et
al. simpli�ed sentences to detect protein phosphorylation events [65]. Their sentence simpli�er broke
complex sentences that contain multiple protein events into smaller sentences that contain only one
distinct event. By breaking these sentences down the authors were able to increase their recall;
however, sentences that contained ambiguous directionality or multiple phosphorylation events were
too complex for the simpli�er. As a consequence, the simpli�er missed some relevant sentences [65].
These errors highlight a crucial need for future algorithms to be generalizable enough to handle
various forms of complex sentences.

Pattern matching is a fundamental approach used to detect relationship asserting sentences. These
patterns can consist of phrases from constituency trees, a set of keywords or some combination of
both [36,67,68,69,70,71]. Xu et al. designed a pattern matcher system to detect sentences in
PubMed abstracts that indicate drug-disease treatments [70]. This system matched drug-disease
pairs from ClinicalTrials.gov to drug-disease pairs mentioned in abstracts. This matching process
aided the authors in identifying sentences that can be used to create simple patterns, such as “Drug in
the treatment of Disease” [70], to match other sentences in a wide variety of abstracts. The authors
hand curated two datasets for evaluation and achieved a high precision score of 0.904 and a low recall
score of 0.131 [70]. This low recall score was based on constructed patterns being too speci�c to
detect infrequent drug pairs. Besides constituency trees, some approaches used dependency trees to
construct patterns [59,72]. Depending upon the nature of the algorithm and text, dependency trees
could be more appropriate than constituency trees and vice versa. The performance di�erence
between the two trees remains as an open question for future exploration.

Rule-based methods provide a basis for many relationship extraction systems. Approaches in this
category range from simplifying sentences for easy extraction to identifying sentences based on
matched key phrases or grammatical patterns. Both require a signi�cant amount of manual e�ort and
expert knowledge to perform well. A future direction is to develop ways to automate the construction
of these hand-crafted patterns, which would accelerate the process of creating these rule-based
systems.



Figure 2:  A visualization of a constituency parse tree using the following sentence: “BRCA1 is associated with breast
cancer” [73]. This type of tree has the root start at the beginning of the sentence. Each word is grouped into subphrases
depending on its correlating part of speech tag. For example, the word “associated” is a past participle verb (VBN) that
belongs to the verb phrase (VP) subgroup.

Figure 3:  A visualization of a dependency parse tree using the following sentence: “BRCA1 is associated with breast
cancer” [74]. For these types of trees, the root begins with the main verb of the sentence. Each arrow represents the
dependency shared between two words. For example, the dependency between BRCA1 and associated is nsubjpass,
which stands for passive nominal subject. This means that “BRCA1” is the subject of the sentence and it is being referred
to by the word “associated”.

Extracting Relationships Without Labels

Unsupervised extractors draw inferences from textual data without the use of annotated labels.
These methods involve some form of clustering or statistical calculations. In this section we focus on
methods that use unsupervised learning to extract relationships from text.

An unsupervised extractor can exploit the fact that two entities may appear together in text. This
event is referred to as co-occurrence and studies that use this phenomenon can be found in Table 2.
Two databases DISEASES [20] and STRING [75] were populated using a co-occurrence scoring method
on PubMed abstracts, which measured the frequency of co-mention pairs within individual sentences
as well as the abstracts themselves. This technique assumes that each individual co-occurring pair is
independent from one another. Under this assumption mention pairs that occur more than expected
were presumed to implicate the presence of an association or interaction. This approach identi�ed
543,405 disease gene associations [20] and 792,730 high con�dence protein-protein interactions [75]
but is limited to only PubMed abstracts.



Full text articles are able to dramatically enhance relationship detection [76,77]. Westergaard et
al. used a co-occurrence approach, similar to DISEASES [20] and STRING [75], to mine full articles for
protein-protein interactions and other protein related information [76]. The authors discovered that
full text provided better prediction power than using abstracts alone, which suggests that future text
mining approaches should consider using full text to increase detection power.

Unsupervised extractors often treat di�erent biomedical relationships as multiple isolated problems.
An alternative to this perspective is to capture all di�erent types at once. Clustering is an approach
that performs simultaneous extraction. Percha et al. used a biclustering algorithm on generated
dependency parse trees to group sentences within PubMed abstracts [78]. Each cluster was manually
curated to determine which relationship each group represented. This approach captured 4,451,661
dependency paths for 36 di�erent groups [78]. Despite the success, this approach su�ered from
technical issues such as dependency tree parsing errors. These errors resulted in some sentences not
being captured by the clustering algorithm [78]. Future clustering approaches should consider
simplifying sentences to prevent this type of issue.

Overall unsupervised methods provide a means to rapidly extract relationship asserting sentences
without the need of annotated text. Approaches in this category range from calculating co-occurrence
scores to clustering sentences and provide a generalizable framework that can be used on large
repositories of text. Full text has already been shown to meaningfully improve the performance of
methods that aim to infer relationships using cooccurrences [76], and we should expect similar
bene�ts for machine learning approaches. Furthermore, we expect that simplifying sentences would
improve unsupervised methods and should be considered as an initial preprocessing step.

Table 2:  Table of approaches that mainly use a form of co-occurrence.

Study Relationship of Interest

CoCoScore [79] Protein-Protein Interactions, Disease-Gene and Tissue-
Gene Associations

Rastegar-Mojarad et al. [80] Drug Disease Treatments

CoPub Discovery [81] Drug, Gene and Disease interactions

Westergaard et al. [76] Protein-Protein Interactions

DISEASES [20] Disease-Gene associations

STRING [82] Protein-Protein Interactions

Singhal et al. [83] Genotype-Phenotype Relationships

Supervised Relationship Extraction

Supervised extractors use labeled sentences to construct generalized patterns that bisect positive
examples (sentences that allude to a relationship) from negative ones (sentences that do not allude to
a relationship). Most of these approaches have �ourished due to pre-labelled publicly available
datasets (Table 3). These datasets were constructed by curators for shared open tasks [84,85] or as a
means to provide the scienti�c community with a gold standard [85,86,87]. Approaches that use
these available datasets range from using linear classi�ers such as support vector machines (SVMs) to
non-linear classi�ers such as deep learning techniques. The rest of this section discusses approaches
that use supervised extractors to detect relationship asserting sentences.

Some supervised extractors involve the mapping of textual input into a high dimensional space. SVMs
are a type of classi�er that can accomplish this task with a mapping function called a kernel [61,88].
These kernels take information such as a sentence’s dependency tree [59,60], part of speech tags
[61] or even word counts [88] and map them onto a dense feature space. Within this space, these



methods construct a hyperplane that separates sentences in the positive class (illustrates a
relationship) from the negative class (does not illustrate a relationship). Kernels can be manually
constructed or selected to cater to the relationship of interest [60,61,88,88]. Determining the correct
kernel is a nontrivial task that requires expert knowledge to be successful. In addition to single kernel
methods, a recent study used an ensemble of SVMs to extract disease-gene associations [89]. This
ensemble outperformed notable disease-gene association extractors [72,90] in terms of precision,
recall and F1 score. Overall, SVMs have been shown to be bene�cial in terms of relationship mining;
however, major focus has shifted to utilizing deep learning techniques which can perform non-linear
mappings of high dimensional data.

Deep learning is an increasingly popular class of techniques that can construct their own features
within a high dimensional space [91,92]. These methods use di�erent forms of neural networks, such
as recurrent or convolutional neural networks, to perform classi�cation.

Recurrent neural networks (RNN) are designed for sequential analysis and use a repeatedly updating
hidden state to make predictions. An example of a recurrent neural network is a long short-term
memory (LSTM) network [93]. Cocos et al. [94] used a LSTM to extract drug side e�ects from de-
identi�ed twitter posts, while Yadav et al. [???] used an LSTM to extract protein-protein interactions.
Others have also embraced LSTMs to perform relationship extraction [94,95,96,97,98]. Despite the
success of these networks, training can be di�cult as these networks are highly susceptible to
vanishing and exploding gradients [99,100]. One proposed solution to this problem is to clip the
gradients while the neural network trains [101]. Besides the gradient problem, these approaches only
peak in performance when the datasets reach at least tens of thousands of data points [102].

Convolutional neural networks (CNNs), which are widely applied for image analysis, use multiple
kernel �lters to capture small subsets of an overall image [92]. In the context of text mining an image
is replaced with words within a sentence mapped to dense vectors (i.e., word embeddings) [103,104].
Peng et al. used a CNN to extract sentences that mentioned protein-protein interactions [105] and
Zhou et al. used a CNN to extract chemical-disease relations [106]. Others have used CNNs and
variants of CNNs to extract relationships from text [107,108,109]. Just like RNNs, these networks
perform well when millions of labeled examples are present [102]; however, obtaining these large
datasets is a non-trivial task. Future approaches that use CNNs or RNNs should consider solutions to
obtaining these large quantities of data through means such as weak supervision [110], semi-
supervised learning [111] or using pre-trained networks via transfer learning [112,113].

Semi-supervised learning [111] and weak supervision [110] are techniques that can rapidly construct
large datasets for machine learning classi�ers. Semi-supervised learning trains classi�ers by
combining labeled data with unlabeled data. For example, one study used a variational auto encoder
with a LSTM network to extract protein-protein interactions from PubMed abstracts and full text
[114]. This is an elegant solution for the small dataset problem but requires labeled data to start. This
dependency makes �nding under-studied relationships di�cult as one would need to �nd or
construct examples of the missing relationships at the start.

Weak or distant supervision takes a di�erent approach by using noisy or even erroneous labels to
train classi�ers [110,115,116,117]. Under this paradigm, sentences are labeled based on their
mention pair being present (positive) or absent (negative) in a database and, once labeled, a machine
learning classi�er can be trained to extract relationships from text [110]. For example, Thomas et
al. [118] used distant supervision to train a SVM to extract sentences mentioning protein-protein
interactions (PPI). Their SVM model achieved comparable performance against a baseline model;
however, the noise generated via distant supervision was di�cult to eradicate [118]. A number of
e�orts have focused on combining distant supervision with other types of labeling strategies to
mitigate the negative impacts of noisy knowledge bases [119,120,121]. Nicholson et al. [109] found
that, in some circumstances, these strategies can be reused across di�erent types of biomedical



relationships to learn a heterogeneous knowledge graph in cases where those relationships describe
similar physical concepts. Combining distant supervision with other types of labeling strategies
remains an active area of investigation with numerous associated challenges and opportunities.
Overall, semi-supervised learning and weak supervision provide promising results in terms of
relationship extraction and future approaches should consider using these paradigms to train
machine learning classi�ers.

Table 3:  A set of publicly available datasets for supervised text mining.

Dataset Type of Sentences

AIMed [50] Protein-Protein Interactions

BioInfer [122] Protein-Protein Interactions

LLL [123] Protein-Protein Interactions

IEPA [124] Protein-Protein Interactions

HPRD5 [86] Protein-Protein Interactions

EU-ADR [49] Disease-Gene Associations

BeFree [90] Disease-Gene Associations

CoMAGC [87] Disease-Gene Associations

CRAFT [125] Disease-Gene Associations

Biocreative V CDR [85] Compound induces Disease

Biocreative IV ChemProt [84] Compound-Gene Bindings

Applying Knowledge Graphs to Biomedical Challenges

Knowledge graphs can help researchers tackle many biomedical problems such as �nding new
treatments for existing drugs [9], aiding e�orts to diagnose patients [126] and identifying associations
between diseases and biomolecules [127]. In many cases, solutions rely on representing knowledge
graphs in a low dimensional space, which is a process called representational learning. The goal of
this process is to retain and encode the local and/or global structure of a knowledge graph that is
relevant to the problem while transforming the graph into a representation that can be readily used
with machine learning methods to build predictors. In the following sections we review methods that
construct a low dimensional space (Unifying Representational Learning Techniques) and discuss
applications that use this space to solve biomedical problems (Unifying Applications).

Unifying Representational Learning Techniques

Mapping high dimensional data into a low dimensional space greatly improves modeling performance
in �elds such as natural language processing [103,104] and image analysis [128]. The success of
these approaches served as rationale for a sharper focus on representing knowledge graphs in a low
dimensional space [129]. Methods of this class are designed to capture the essence of a knowledge
graph in the form of dense vectors [130,131]. These vectors are often assigned to nodes in a graph
[132], but edges can be assigned as well [133]. Techniques that construct a low dimensional space
often require information on how nodes are connected with one another [134,135,136,137], while
other approaches can work directly with the edges themselves [138]. Once this space has been
constructed, machine learning techniques can utilize the space for downstream analyses such as
classi�cation or clustering. We group techniques that construct this space into the following three
categories: matrix factorization, translational distance models, and neural network models (Figure 4).



Figure 4:  Pipeline for representing knowledge graphs in a low dimensional space. Starting with a knowledge graph, this
space can be generated using one of the following options: Matrix Factorization (a), Translational Models (b) or Neural
Network Models (c). The output of this pipeline is an embedding space that clusters similar node types together.

Matrix Factorization

Matrix factorization is a class of techniques that use linear algebra to map high dimensional data into
a low dimensional space. This projection is accomplished by decomposing a matrix into a set of small
rectangular matrices (Figure 4 (a)). Notable methods for matrix decomposition include Isomap [139],
Laplacian eigenmaps [131] and Principal Component Analysis (PCA) [140]/Singular Vector
Decomposition (SVD) [130]. These methods were designed to be used on many di�erent types of
data; however, we discuss their use in the context of representing knowledge graphs in a low
dimensional space and focus particularly on SVD and laplacian eigenmaps.

SVD [130] is an algorithm that uses matrix factorization to portray knowledge graphs in a low
dimensional space. The input for this algorithm is an adjacency matrix ( ), which is a square matrix
where rows and columns represent nodes and each entry is a binary representation of the presence
of an edge between two nodes.  is constructed based on the knowledge graph’s structure itself and
collapses all edges between two nodes into one unique entity. Following construction,  is
decomposed into the following three parts: a square matrix  and a set of two small rectangular
matrices  and . Values within  are called singular values, which are akin to eigenvalues [130].
Each row in  and each column in  represents nodes within a low dimensional space [130,140]. In
practice,  is usually used to represent nodes in a knowledge graph and can be used as input for
machine learning classi�ers to perform tasks such as link prediction or node classi�cation [141];
however,  has also been used [130,142]. Typically, matrix factorization algorithms such as SVD are
used for recommendation systems via collaborative �ltering [143]; however, this technique can also
provide a standalone baseline for other relational learning approaches [141].

Laplacian eigenmaps assume there is low dimensional structure in a high dimensional space and
preserves this structure when projecting data into a low dimensional space [131]. The �rst step of this
technique is to preserve the low dimensional structure by representing data in the form of a graph
where nodes are datapoints and edges are the distance between two points. Knowledge graphs
already provide this representation, so no additional processing is necessary at this stage. The second
step of this technique is to obtain both an adjacency matrix ( ) and a degree matrix ( ) from the
graph representation. A degree matrix is a diagonal matrix where each entry represents the number

A

A

A

Σ

U V T Σ

U V T

U

V
T

A D



of edges connected to a node. The adjacency and degree matrices are converted into a laplacian
matrix ( ), which is a matrix that shares the same properties as the adjacency matrix. The laplacian
matrix is generated by subtracting the adjacency matrix from the degree matrix ( ) and,
once constructed, the algorithm uses linear algebra to calculate the laplacian’s eigenvalues and
eigenvectors ( ). The generated eigenvectors represent the knowledge graph’s nodes
represented in a low dimensional space [131]. Other e�orts have used variants of this algorithm to
construct low dimensional representations of knowledge graphs [134,135,144]. Typically, eigenmaps
work well when knowledge graphs have a sparse number of edges between nodes but struggle when
presented with denser networks [141,144,145]. An open area of exploration is to adapt these
methods to accommodate knowledge graphs that have a large number of edges.

Matrix factorization is a powerful technique that represents high dimensional data in a low
dimensional space. The representation of a knowledge graph in this reduced space does not meet our
de�nition of a knowledge graph; however, this representation supports many use cases including
similarity-based (e.g., cosine similarity [146]) and machine learning applications. Common matrix
factorization approaches involve using SVD, Laplacian eigenmaps or variants of the two to decompose
matrices into smaller rectangular forms. Regarding knowledge graphs, the adjacency matrix ( ) is the
typical matrix that gets decomposed, but the laplacian matrix ( ) can be used as well.
Despite reported success, the dependence on matrices creates an issue of scalability as matrices of
large networks may reach memory limitations. Furthermore, the approaches we discussed consider
all edge types as equivalent. These limitations could be mitigated by new approaches designed to
accommodate multiple node and edge types separately.

Translational Distance Models

Translational distance models treat edges in a knowledge graph as linear transformations. For
example, one such algorithm, TransE [133], treats every node-edge pair as a triplet with head nodes
represented as , edges represented as , and tail nodes represented as . These representations are
combined into an equation that mimics the iconic word vectors translations (

) from the word2vec model [104]. The described equation is
shown as follows: . Starting at the head node ( ), one adds the edge vector ( ) and the
result should be the tail node ( ). TransE optimizes vectors for , , , while guaranteeing the global
equation ( ) is satis�ed [133]. A caveat to the TransE approach is that it forces relationships
to have a one to one mapping, which may not be appropriate for all relationship types.

Wang et al. attempted to resolve the one to one mapping issue by developing the TransH model
[147]. TransH treats relations as hyperplanes rather than a regular vector and projects the head ( )
and tail ( ) nodes onto a hyperplane. Following this projection, a distance vector ( ) is calculated
between the projected head and tail nodes. Finally, each vector is optimized while preserving the
global equation:  [147]. Other e�orts have built o� of the TransE and TransH models
[148,149]. In the future, it may be bene�cial for these models to incorporate other types of
information such as edge con�dence scores, textual information, or edge type information when
optimizing these distance models.

Neural Networks

Neural networks are a class of machine learning models inspired by the concept of biological neural
networks [150]. These networks are reputable for making non-linear transformations of high
dimensional data to solve classi�cation and regression problems [150]. In the context of knowledge
graphs, the most commonly used structures are based on word2vec [103,104]. The word2vec term
applies to a set of conceptually related approaches that are widely used in the natural language
processing �eld. The goal of word2vec is to project words onto a low dimensional space that
preserves their semantic meaning. Strategies for training word2vec models use one of two neural
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network architectures: skip-gram and continuous bag of words (CBOW). Both models are feed-
forward neural networks, but CBOW models are trained to predict a word given its context while skip-
gram models are trained to predict the context given a word [103,104]. Once training is completed,
words will be associated with dense vectors that downstream models, such as feed forward networks
or recurrent networks, can use for input.

Deepwalk is an early method that represents knowledge graphs in a low dimensional space [151]. The
�rst step of this method is to perform a random walk along a knowledge graph. During the random
walk, every generated sequence of nodes is recorded and treated as a sentence in word2vec
[103,104]. After every node has been processed, a skip-gram model is trained to predict the context
of each node thereby constructing a low dimensional representation of a knowledge graph [151]. A
limitation for deepwalk is that the random walk cannot be controlled, so every node has an equal
chance to be reached. Grover and Leskovec demonstrated that this limitation can hurt performance
when classifying edges between nodes and developed node2vec as a result [132]. Node2vec operates
in the same fashion as deepwalk; however, this algorithm speci�es a parameter that lets the random
walk be biased when traversing nodes [132]. A caveat to both deepwalk and node2vec is that they
ignore information such as edge type and node type. Various approaches have evolved to �x this
limitation by incorporating node, edge and even path types when representing knowledge graphs in a
low dimensional space [152,153,154,155]. An emerging area of work is to develop approaches that
capture both the local and global structure of a graph when constructing this low dimensional space.

Though word2vec is the most common framework used to represent graphs, neural networks are
sometimes designed to use the adjacency matrix as input [103,104]. These approaches use models
called autoencoders [156,157,158]. Autoencoders are designed to map input into a low dimensional
space and then back to a reconstruction of the same input [159,160]. It is possible to layer on
additional objectives by modifying the loss function to take into account criteria above and beyond
reconstruction loss [161,162]. In the context of knowledge graphs, the generated space correlates
nodes with dense vectors that capture a graph’s connectivity structure [156,157,158]. Despite the
high potential of autoencoders, this method relies on an adjacency matrix for input which can run into
scalability issues as a knowledge graph asymptotically increases in size [163]. Plus, Khosla et
al. discovered that approaches akin to node2vec outperformed algorithms using autoencoders when
undergoing link prediction and node classi�cation [163].

Overall, the performance of neural network models largely depends upon the structure of nodes and
edges within a knowledge graph [163]. Furthermore, when these approaches are used only nodes are
explicitly represented by these vectors. This means a represented knowledge graph no longer meets
our de�nition of a knowledge graph; however, this representation can make it more suitable for many
biomedical applications. Future areas of exploration should include hybrid models that use both
node2vec and autoencoders to construct complementary low dimensional representations of
knowledge graphs.

Unifying Applications

Knowledge graphs have been applied to many biomedical challenges ranging from identifying
proteins’ functions [164] to prioritizing cancer genes [165] to recommending safer drugs for patients
[166,167] (Figure 5). In this section we review how knowledge graphs are applied in biomedical
settings and put particular emphasis on an emerging set of techniques that represent knowledge
graphs in a low dimensional space.



Figure 5:  Overview of various biomedical applications that make use of knowledge graphs. Categories consist of: (a)
Multi-Omic applications, (b) Pharmaceutical Applications and (c) Clinical Applications.

Multi-Omic Applications

Multi-omic applications employ knowledge graphs to study the genome, how genes are expressed in
the transcriptome, and how the products of those transcripts interact in the proteome. These graphs
are used to establish connections between -omic entities as well as diseases. Tasks in this context
include gene-symptom prioritization [168], protein-protein interaction prediction [169,170] and
detecting miRNA-disease associations [127]. We focus speci�cally on multi-omic applications that
represent knowledge graphs in a low dimensional space to make connections.

Recommendation systems make use of knowledge graphs to establish links between RNA with
disease and proteins with other proteins. Shen et al. used an algorithm called collaborative �ltering to
establish an association between miRNA and diseases [127]. The authors constructed a miRNA-
Disease network using the Human MicroRNA Disease database (HMDD) [171] and generated an
adjacency matrix with the rows representing miRNA and the columns representing diseases. This
matrix was decomposed into small rectangular matrices using SVD, then these small matrices were
used to calculate similarity scores between miRNAs and diseases. High scores implied a high
likelihood that a given miRNA had an association with a given disease [127]. Other approaches built
o� of Shen et al.’s work by incorporating novel ways to perform matrix factorization [172,173,174] or
by integrating machine learning models in conjunction with matrix factorization [175]. These
approaches achieved high area under the receiver operating curve (AUROC), but new discoveries have
been hard to validate as experiments in this space are costly and time consuming at best [127]. Apart
from miRNA, collaborative �ltering has been used to predict protein-protein interactions
[169,170,176]. Although extensive validation of newly generated candidates may be impractical, it
would be helpful to see future e�orts in this space include a blinded literature search for prioritized
and randomly selected candidates as part of the standard evaluation pipeline.

Applications of neural network models have mainly used the node2vec model [132] or variants of it.
Yang et al. used node2vec to create a recommendation system to infer associations between genes
and disease symptoms [168]. The authors constructed a gene-disease symptom knowledge graph by
combining two bipartite graphs: genes with diseases and diseases with disease symptoms. The



generated graph was embedded via node2vec and similarity scores were calculated for every gene-
symptom pair in the graph. High scores implied a high likelihood of an association [168]. This
approach outperformed methods that didn’t use a knowledge graph; however, validation was di�cult
as it involved manual curation of the literature [168]. Similar approaches used variants of node2vec to
predict gene-disease associations [8,177,178] analyze RNA-seq data [179] and infer novel protein
information [164,180,181,182].

Knowledge graphs bene�ted the multi-omics �eld as a resource for generating novel discoveries.
Most approaches to date use matrix factorization and node2vec to project knowledge graph into a
low dimensional space, while translational models (Figure 4 (b)) may be an untapped resource that
could aid future e�orts. Another area of exploration could be incorporating multiple sources of
information such as compounds, anatomic locations or genetic pathways to improve the speci�city of
�ndings (i.e., to predict that a protein-protein interaction happens in a speci�c cell type or tissue).

Pharmaceutical Applications

There are a multitude of examples where knowledge graphs have been applied to identify new
properties of drugs. Tasks in this �eld involve predicting drugs interacting with other drugs [183],
identifying molecular targets a drug might interact with [184] and identifying new disease treatments
for previously established drugs [185]. In this section we concentrate on applications that apply these
graphs to discover new properties of drugs and focus on approaches that use these graphs in a low-
dimensional space.

Similar to multi-omic applications, recommendation systems have utilized knowledge graphs to infer
novel links between drugs and diseases. Dai et al. used collaborative �ltering to infer drug-disease
associations [184]. The authors constructed a drug-disease network by integrating two bipartite
networks: a drug-gene interaction network and a disease-gene interaction network. They integrated
both networks under the assumption that drugs associated with a disease interact with the same
gene of interest. Following construction, the authors generated an adjacency matrix where rows
represent drugs and columns represent diseases. This matrix was decomposed into two small
rectangular matrices and these matrices were used to calculate similarity scores between all drugs
and all diseases. High values implied a high chance of an association [184]. Related approaches used
this technique to infer drug-target interactions [186,187,188] and drug-disease treatments
[189,190,191,192,193]. In spite of reported success, these approaches are limited to the drugs and
diseases contained in the graph. Combining these approaches with representations of chemical
structures might make it possible to one day make predictions about novel compounds.

Applications that use neural network models have used node2vec [194,195] and autoencoders
[196,197] approaches to represent knowledge graphs in a low dimensional space. Zong et al. used a
node2vec-like model to predict drug-target associations [194]. The authors constructed a disease-
target-disease network using drug centered databases: Drugbank [198] and Diseasome [199]. Next,
the authors applied a random walk to the graph and trained a skip-gram model to generate a low
dimensional representation of the graph. Lastly, the authors constructed a similarity metric that used
this space to rank how similar drugs are to their targets [194]. A limitation to this approach is that
their graph is missing information such as pharmacological class or drug chemical structure that could
improve prediction performance. Overall, neural networks provide a robust set of techniques that
have been shown to outperform most linear approaches in this context [200,201].

Applications that discover new properties of drugs have bene�ted from using knowledge graphs as a
resource. Most methods to date use matrix factorization and neural network models to produce a
low-dimensional representation. Due to the success of neural networks [200,201] much of the �eld’s
focus has shifted to these techniques; however, a possible improvement is to use an ensemble of
neural network models and linear methods to improve performance. Another potential avenue for



future work would be to incorporate entity-speci�c hierarchical information or similarity information
to improve detection power. For drugs, this could include pharmaceutical classes or chemical
structure similarities.

Clinical applications

Clinical applications that use knowledge graphs are in early stages of development, but the long-term
goal is to use analyses of these graphs to aid patient care. Typically, graphs for these applications are
constructed from electronic health records (EHR): nodes represent patients, drugs and diseases while
edges represent relationships such as a patient being prescribed a treatment or a patient being
diagnosed with a disease [26,202,203,204]. Tasks within this �eld range from improving patient
diagnoses [205,206] to recommending safer drugs for patients [166,206]. We brie�y discuss e�orts
that use knowledge graphs to accomplish such tasks.

Early work in this �eld applied translational models (Figure 4 (b)) to knowledge graphs with the goal of
recommending safe drugs. Wang et al. used a variant of the TransH [147] model to create such a
system for patients [166]. They constructed a disease-patient-drug network by integrating a patient-
disease bipartite network with a patient-drug bipartite network. Every node in the newly constructed
graph was embedded while satisfying the following equation: . Following the embedding
step, the authors formulated their own similarity metric that selected drug combinations with a low
number of interactions [166]. Researchers in [149] applied a similar variant of the TransH model to a
medical knowledge graph and evaluated their model for link prediction rather than patient
recommendation.

In contrast with most applications where node2vec and autoencoder models have become
established, this �eld have focused on using graph attention models [207]. These models mimic
machine translation models [208] and aim to simultaneously represent knowledge graphs in a low
dimensional space and perform the task at hand. Choi et al. used a graph attention model to predict
patient diagnoses [126]. The authors constructed a directed graph using medical concepts from
patient EHR data. This directed graph was fed into a graph attention network and then used to predict
a patient’s likelihood of heart failure [126]. Other approaches have used graph attention models to
perform clinical tasks such as drug safety recommendations [167] and patient diagnoses [209].

Knowledge graphs have shown promising results when used for clinical applications; however, there
is still room for improvement. Most approaches have run into the common problem of missing data
within EHR [126,166,167]. Future directions for the �eld consist of designing algorithms that can �ll in
this missing data gap or construct models that can take missing data into account.

Conclusion

Knowledge graphs are becoming widely used in biomedicine, and we expect their use to continue to
grow. At the moment, most are constructed from databases derived from manual curation or from
co-occurrences in text. We expect that machine learning approaches will play a key role in quickly
deriving new �ndings from these graphs. Representing these knowledge graphs in a low dimensional
space that captures a graph’s local and global structure can enable many downstream machine
learning analyses, and methods to capture this structure are an active area of research.

As with any �eld, rigorous evaluation that can identify key factors that drive success is critical to
moving the �eld forward. In regard to knowledge graphs, evaluation remains di�cult. Experiments in
this context require a signi�cant amount of time and consequently resources [127,168]. Moving from
open ended and uncontrolled evaluations that consist of describing �ndings that are consistent with
the literature to blinded evaluations of the literature that corroborate predictions and non-predictions
would be a valuable �rst step. There are also well-documented biases related to node degree and
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degree distribution that must be considered for accurate evaluation [210]. Furthermore, the diversity
of applications hinders the development of a standardized set of expected evaluations.

We anticipate that a fruitful avenue of research will be techniques that can produce low dimensional
representations of knowledge graphs which distinguish between multiple node and edge types. There
are many di�erent sources of bias that lead to spurious edges or incompleteness, and modeling these
biases may support better representations of knowledge graphs. It is a promising time for research
into the construction and application of knowledge graphs. The peer reviewed literature is growing at
an increasing rate and maintaining a complete understanding is becoming increasingly challenging for
scientists. One path that scientists can take to maintain awareness is to become hyper-focused on
speci�c areas of knowledge graph literature. If advances in how these graphs are constructed,
represented and applied can enable the linking of �elds, we may be able to savor the bene�ts of this
detailed knowledge without losing the broader contextual links.
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