Gender

alpha_threshold <- qnorm(0.975)

all_full_names <- read_tsv('data/names/full-names.tsv.xz') %>% distinct()
gender_df <- read_tsv('data/gender/genderize.tsv')

# world <- ne_countries(scale='medium',returnclass = 'sf') 
nat_to_reg <- world %>% 
  select(iso_a2, name, region_wb) %>%
  rename('countries' = iso_a2,
         'country_name' = name,
         'region' = region_wb)

iscb_gender_df <- read_tsv('data/iscb/keynotes.tsv') %>%
  mutate(publication_date = ymd(year, truncated = 2),
         year = ymd(year, truncated = 2)) %>% 
  left_join(all_full_names, by = c('fore_name', 'last_name')) %>% 
  left_join(gender_df, by = 'fore_name_simple') %>% 
  filter(conference != 'PSB', year == '2020-01-01') 

start_year <- 1993
end_year <- 2019
n_years <- end_year - start_year
my_confs <- unique(iscb_gender_df$conference)
n_confs <- length(my_confs)
table(iscb_gender_df$afflcountries)
## 
##          China          Italy          Japan United Kingdom 
##              1              1              1              1 
##  United States 
##             13
mean(iscb_gender_df$probability_male, na.rm = T)
## [1] 0.584375

Proportion of US affiliation: 76.47%. Mean probability of being male: 58.44%.

Name origins

nationalize_df <- read_tsv('https://raw.githubusercontent.com/greenelab/wiki-nationality-estimate/7c22d0a5f661ce5aeb785215095deda40973ff17/data/NamePrism_results_authors.tsv') %>%
  rename('full_name' = X1) %>%
  distinct(full_name, .keep_all = T) %>%
  left_join(all_full_names, by = 'full_name')

iscb_nat_df <- read_tsv('data/iscb/keynotes.tsv') %>%
  mutate(publication_date = ymd(year, truncated = 2),
         year = ymd(year, truncated = 2)) %>%
  left_join(all_full_names, by = c('fore_name', 'last_name')) %>%
  left_join(nationalize_df, by = c('fore_name', 'last_name_simple')) %>% 
  filter(conference != 'PSB', year == '2020-01-01') 
  # remove PSB, exclude ISCB Fellows and ISMB speakers in 2020 for now

my_confs <- unique(iscb_nat_df$conference)
n_confs <- length(my_confs)
region_levels <- paste(c('Celtic/English', 'European', 'East Asian', 'Hispanic', 'South Asian', 'Arabic', 'Hebrew', 'African', 'Nordic', 'Greek'), 'names')
iscb_nat_df %>%
  select(African:SouthAsian, publication_date) %>%
  pivot_longer(African:SouthAsian,
               names_to = 'region',
               values_to = 'probabilities') %>%
  filter(!is.na(probabilities)) %>% 
  group_by(region) %>%
  add_count() %>%
  summarise(
    mean_prob = mean(probabilities, na.rm = T),
    sd_prob = sd(probabilities, na.rm = T),
    n = mean(n),
    me_prob = alpha_threshold * sd_prob / sqrt(n)
  ) %>%
  ungroup() %>%
  recode_region() %>% 
  arrange(desc(mean_prob))
## `summarise()` ungrouping output (override with `.groups` argument)
## Warning: Problem with `mutate()` input `region`.
## ℹ Unknown levels in `f`: OtherCategories
## ℹ Input `region` is `fct_recode(...)`.
## Warning: Unknown levels in `f`: OtherCategories
## # A tibble: 10 x 5
##    region               mean_prob sd_prob     n me_prob
##    <fct>                    <dbl>   <dbl> <dbl>   <dbl>
##  1 East Asian names       0.330    0.473     15 0.239  
##  2 Celtic/English names   0.147    0.261     15 0.132  
##  3 European names         0.146    0.225     15 0.114  
##  4 South Asian names      0.136    0.348     15 0.176  
##  5 Hebrew names           0.0736   0.171     15 0.0867 
##  6 Hispanic names         0.0626   0.179     15 0.0904 
##  7 Greek names            0.0596   0.218     15 0.110  
##  8 African names          0.0214   0.0424    15 0.0215 
##  9 Nordic names           0.0190   0.0460    15 0.0233 
## 10 Arab/Turk/Pers names   0.00555  0.0117    15 0.00594
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04 LTS
## 
## Matrix products: default
## BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=C             
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods  
## [7] base     
## 
## other attached packages:
##  [1] broom_0.7.2         DT_0.16             epitools_0.5-10.1  
##  [4] gdtools_0.2.2       wru_0.1-10          rnaturalearth_0.1.0
##  [7] lubridate_1.7.9.2   caret_6.0-86        lattice_0.20-41    
## [10] forcats_0.5.0       stringr_1.4.0       dplyr_1.0.2        
## [13] purrr_0.3.4         readr_1.4.0         tidyr_1.1.2        
## [16] tibble_3.0.4        ggplot2_3.3.2       tidyverse_1.3.0    
## 
## loaded via a namespace (and not attached):
##   [1] colorspace_2.0-0        ellipsis_0.3.1         
##   [3] class_7.3-17            rprojroot_1.3-2        
##   [5] fs_1.5.0                rstudioapi_0.12        
##   [7] farver_2.0.3            remotes_2.2.0          
##   [9] prodlim_2019.11.13      fansi_0.4.1            
##  [11] xml2_1.3.2              codetools_0.2-16       
##  [13] splines_4.0.3           knitr_1.30             
##  [15] pkgload_1.1.0           jsonlite_1.7.1         
##  [17] pROC_1.16.2             dbplyr_2.0.0           
##  [19] rgeos_0.5-5             compiler_4.0.3         
##  [21] httr_1.4.2              backports_1.2.0        
##  [23] assertthat_0.2.1        Matrix_1.2-18          
##  [25] cli_2.1.0               htmltools_0.5.0        
##  [27] prettyunits_1.1.1       tools_4.0.3            
##  [29] gtable_0.3.0            glue_1.4.2             
##  [31] rnaturalearthdata_0.1.0 reshape2_1.4.4         
##  [33] Rcpp_1.0.5              cellranger_1.1.0       
##  [35] vctrs_0.3.4             svglite_1.2.3.2        
##  [37] nlme_3.1-149            iterators_1.0.13       
##  [39] crosstalk_1.1.0.1       timeDate_3043.102      
##  [41] gower_0.2.2             xfun_0.19              
##  [43] ps_1.4.0                testthat_3.0.0         
##  [45] rvest_0.3.6             lifecycle_0.2.0        
##  [47] devtools_2.3.2          MASS_7.3-53            
##  [49] scales_1.1.1            ipred_0.9-9            
##  [51] hms_0.5.3               RColorBrewer_1.1-2     
##  [53] yaml_2.2.1              curl_4.3               
##  [55] memoise_1.1.0           rpart_4.1-15           
##  [57] stringi_1.5.3           desc_1.2.0             
##  [59] foreach_1.5.1           e1071_1.7-4            
##  [61] pkgbuild_1.1.0          lava_1.6.8.1           
##  [63] systemfonts_0.3.2       rlang_0.4.8            
##  [65] pkgconfig_2.0.3         evaluate_0.14          
##  [67] sf_0.9-6                recipes_0.1.15         
##  [69] htmlwidgets_1.5.2       labeling_0.4.2         
##  [71] cowplot_1.1.0           tidyselect_1.1.0       
##  [73] processx_3.4.4          plyr_1.8.6             
##  [75] magrittr_1.5            R6_2.5.0               
##  [77] generics_0.1.0          DBI_1.1.0              
##  [79] mgcv_1.8-33             pillar_1.4.6           
##  [81] haven_2.3.1             withr_2.3.0            
##  [83] units_0.6-7             survival_3.2-7         
##  [85] sp_1.4-4                nnet_7.3-14            
##  [87] modelr_0.1.8            crayon_1.3.4           
##  [89] KernSmooth_2.23-17      utf8_1.1.4             
##  [91] rmarkdown_2.5           usethis_1.6.3          
##  [93] grid_4.0.3              readxl_1.3.1           
##  [95] data.table_1.13.2       callr_3.5.1            
##  [97] ModelMetrics_1.2.2.2    reprex_0.3.0           
##  [99] digest_0.6.27           classInt_0.4-3         
## [101] stats4_4.0.3            munsell_0.5.0          
## [103] viridisLite_0.3.0       sessioninfo_1.1.1
LS0tCnRpdGxlOiAiQW5hbHl6aW5nIDIwMjAgZGF0YTogSVNDQiBGZWxsb3dzIGFuZCBJU01CIFNwZWFrZXJzIgpvdXRwdXQ6IGh0bWxfZG9jdW1lbnQKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkobHVicmlkYXRlKQpzb3VyY2UoJ3V0aWxzL3ItdXRpbHMuUicpCmxvYWQoJ1JkYXRhL3Jhd3MuUmRhdGEnKQp0aGVtZV9zZXQodGhlbWVfYncoKSArIHRoZW1lKGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSkpCmBgYAoKIyMgR2VuZGVyCgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQphbHBoYV90aHJlc2hvbGQgPC0gcW5vcm0oMC45NzUpCgphbGxfZnVsbF9uYW1lcyA8LSByZWFkX3RzdignZGF0YS9uYW1lcy9mdWxsLW5hbWVzLnRzdi54eicpICU+JSBkaXN0aW5jdCgpCmdlbmRlcl9kZiA8LSByZWFkX3RzdignZGF0YS9nZW5kZXIvZ2VuZGVyaXplLnRzdicpCgojIHdvcmxkIDwtIG5lX2NvdW50cmllcyhzY2FsZT0nbWVkaXVtJyxyZXR1cm5jbGFzcyA9ICdzZicpIApuYXRfdG9fcmVnIDwtIHdvcmxkICU+JSAKICBzZWxlY3QoaXNvX2EyLCBuYW1lLCByZWdpb25fd2IpICU+JQogIHJlbmFtZSgnY291bnRyaWVzJyA9IGlzb19hMiwKICAgICAgICAgJ2NvdW50cnlfbmFtZScgPSBuYW1lLAogICAgICAgICAncmVnaW9uJyA9IHJlZ2lvbl93YikKCmlzY2JfZ2VuZGVyX2RmIDwtIHJlYWRfdHN2KCdkYXRhL2lzY2Iva2V5bm90ZXMudHN2JykgJT4lCiAgbXV0YXRlKHB1YmxpY2F0aW9uX2RhdGUgPSB5bWQoeWVhciwgdHJ1bmNhdGVkID0gMiksCiAgICAgICAgIHllYXIgPSB5bWQoeWVhciwgdHJ1bmNhdGVkID0gMikpICU+JSAKICBsZWZ0X2pvaW4oYWxsX2Z1bGxfbmFtZXMsIGJ5ID0gYygnZm9yZV9uYW1lJywgJ2xhc3RfbmFtZScpKSAlPiUgCiAgbGVmdF9qb2luKGdlbmRlcl9kZiwgYnkgPSAnZm9yZV9uYW1lX3NpbXBsZScpICU+JSAKICBmaWx0ZXIoY29uZmVyZW5jZSAhPSAnUFNCJywgeWVhciA9PSAnMjAyMC0wMS0wMScpIAoKc3RhcnRfeWVhciA8LSAxOTkzCmVuZF95ZWFyIDwtIDIwMTkKbl95ZWFycyA8LSBlbmRfeWVhciAtIHN0YXJ0X3llYXIKbXlfY29uZnMgPC0gdW5pcXVlKGlzY2JfZ2VuZGVyX2RmJGNvbmZlcmVuY2UpCm5fY29uZnMgPC0gbGVuZ3RoKG15X2NvbmZzKQoKYGBgCgoKYGBge3J9CnRhYmxlKGlzY2JfZ2VuZGVyX2RmJGFmZmxjb3VudHJpZXMpCm1lYW4oaXNjYl9nZW5kZXJfZGYkcHJvYmFiaWxpdHlfbWFsZSwgbmEucm0gPSBUKQpgYGAKClByb3BvcnRpb24gb2YgVVMgYWZmaWxpYXRpb246IDc2LjQ3XCUuCk1lYW4gcHJvYmFiaWxpdHkgb2YgYmVpbmcgbWFsZTogNTguNDRcJS4KCiMjIE5hbWUgb3JpZ2lucwoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbmF0aW9uYWxpemVfZGYgPC0gcmVhZF90c3YoJ2h0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9ncmVlbmVsYWIvd2lraS1uYXRpb25hbGl0eS1lc3RpbWF0ZS83YzIyZDBhNWY2NjFjZTVhZWI3ODUyMTUwOTVkZWRhNDA5NzNmZjE3L2RhdGEvTmFtZVByaXNtX3Jlc3VsdHNfYXV0aG9ycy50c3YnKSAlPiUKICByZW5hbWUoJ2Z1bGxfbmFtZScgPSBYMSkgJT4lCiAgZGlzdGluY3QoZnVsbF9uYW1lLCAua2VlcF9hbGwgPSBUKSAlPiUKICBsZWZ0X2pvaW4oYWxsX2Z1bGxfbmFtZXMsIGJ5ID0gJ2Z1bGxfbmFtZScpCgppc2NiX25hdF9kZiA8LSByZWFkX3RzdignZGF0YS9pc2NiL2tleW5vdGVzLnRzdicpICU+JQogIG11dGF0ZShwdWJsaWNhdGlvbl9kYXRlID0geW1kKHllYXIsIHRydW5jYXRlZCA9IDIpLAogICAgICAgICB5ZWFyID0geW1kKHllYXIsIHRydW5jYXRlZCA9IDIpKSAlPiUKICBsZWZ0X2pvaW4oYWxsX2Z1bGxfbmFtZXMsIGJ5ID0gYygnZm9yZV9uYW1lJywgJ2xhc3RfbmFtZScpKSAlPiUKICBsZWZ0X2pvaW4obmF0aW9uYWxpemVfZGYsIGJ5ID0gYygnZm9yZV9uYW1lJywgJ2xhc3RfbmFtZV9zaW1wbGUnKSkgJT4lIAogIGZpbHRlcihjb25mZXJlbmNlICE9ICdQU0InLCB5ZWFyID09ICcyMDIwLTAxLTAxJykgCiAgIyByZW1vdmUgUFNCLCBleGNsdWRlIElTQ0IgRmVsbG93cyBhbmQgSVNNQiBzcGVha2VycyBpbiAyMDIwIGZvciBub3cKCm15X2NvbmZzIDwtIHVuaXF1ZShpc2NiX25hdF9kZiRjb25mZXJlbmNlKQpuX2NvbmZzIDwtIGxlbmd0aChteV9jb25mcykKcmVnaW9uX2xldmVscyA8LSBwYXN0ZShjKCdDZWx0aWMvRW5nbGlzaCcsICdFdXJvcGVhbicsICdFYXN0IEFzaWFuJywgJ0hpc3BhbmljJywgJ1NvdXRoIEFzaWFuJywgJ0FyYWJpYycsICdIZWJyZXcnLCAnQWZyaWNhbicsICdOb3JkaWMnLCAnR3JlZWsnKSwgJ25hbWVzJykKYGBgCgoKYGBge3J9CmlzY2JfbmF0X2RmICU+JQogIHNlbGVjdChBZnJpY2FuOlNvdXRoQXNpYW4sIHB1YmxpY2F0aW9uX2RhdGUpICU+JQogIHBpdm90X2xvbmdlcihBZnJpY2FuOlNvdXRoQXNpYW4sCiAgICAgICAgICAgICAgIG5hbWVzX3RvID0gJ3JlZ2lvbicsCiAgICAgICAgICAgICAgIHZhbHVlc190byA9ICdwcm9iYWJpbGl0aWVzJykgJT4lCiAgZmlsdGVyKCFpcy5uYShwcm9iYWJpbGl0aWVzKSkgJT4lIAogIGdyb3VwX2J5KHJlZ2lvbikgJT4lCiAgYWRkX2NvdW50KCkgJT4lCiAgc3VtbWFyaXNlKAogICAgbWVhbl9wcm9iID0gbWVhbihwcm9iYWJpbGl0aWVzLCBuYS5ybSA9IFQpLAogICAgc2RfcHJvYiA9IHNkKHByb2JhYmlsaXRpZXMsIG5hLnJtID0gVCksCiAgICBuID0gbWVhbihuKSwKICAgIG1lX3Byb2IgPSBhbHBoYV90aHJlc2hvbGQgKiBzZF9wcm9iIC8gc3FydChuKQogICkgJT4lCiAgdW5ncm91cCgpICU+JQogIHJlY29kZV9yZWdpb24oKSAlPiUgCiAgYXJyYW5nZShkZXNjKG1lYW5fcHJvYikpCmBgYAoKPCEtLSAjIyBSYWNlIC0tPgo8IS0tIEFtb25nIFVTLWFmZmlsaWF0ZWQgaG9ub3JlZXM6IC0tPgoKPCEtLSBgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfSAtLT4KPCEtLSBpc2NiX3VzX3JhY2UgPC0gcmVhZF90c3YoJ2RhdGEvaXNjYi9rZXlub3Rlcy50c3YnKSAlPiUgLS0+CjwhLS0gICBtdXRhdGUocHVibGljYXRpb25fZGF0ZSA9IHltZCh5ZWFyLCB0cnVuY2F0ZWQgPSAyKSwgLS0+CjwhLS0gICAgICAgICAgeWVhciA9IHltZCh5ZWFyLCB0cnVuY2F0ZWQgPSAyKSkgJT4lICAtLT4KPCEtLSAgIHNlcGFyYXRlX3Jvd3MoYWZmbGNvdW50cmllcywgc2VwID0gJ1xcfCcpICU+JSAgLS0+CjwhLS0gICBmaWx0ZXIoYWZmbGNvdW50cmllcyA9PSAnVW5pdGVkIFN0YXRlcycpICU+JSAtLT4KPCEtLSAgIGxlZnRfam9pbihhbGxfZnVsbF9uYW1lcywgYnkgPSBjKCdmb3JlX25hbWUnLCAnbGFzdF9uYW1lJykpICU+JSAtLT4KPCEtLSAgIHJlbmFtZSgnc3VybmFtZScgPSBsYXN0X25hbWVfc2ltcGxlKSAlPiUgLS0+CjwhLS0gICBwcmVkaWN0X3JhY2Uoc3VybmFtZS5vbmx5ID0gVCwgaW1wdXRlLm1pc3NpbmcgPSBGKSAlPiUgIC0tPgo8IS0tICAgZmlsdGVyKGNvbmZlcmVuY2UgIT0gJ1BTQicsIHllYXIgPT0gJzIwMjAtMDEtMDEnKSAgLS0+Cgo8IS0tIG15X2NvbmZzIDwtIHVuaXF1ZShpc2NiX3VzX3JhY2UkY29uZmVyZW5jZSkgLS0+CjwhLS0gbl9jb25mcyA8LSBsZW5ndGgobXlfY29uZnMpIC0tPgo8IS0tIHN1bShpcy5uYShpc2NiX3VzX3JhY2UkcHJlZC53aGkpKSAtLT4KPCEtLSBgYGAgLS0+Cgo8IS0tIDQgb3V0IG9mIDEzIGRvIG5vdCBoYXZlIGEgcmFjZSBwcmVkaWN0aW9uLiAtLT4KCgo8IS0tIGBgYHtyfSAtLT4KPCEtLSBpc2NiX3VzX3JhY2UgJT4lIC0tPgo8IS0tICAgcGl2b3RfbG9uZ2VyKGNvbnRhaW5zKCdwcmVkJyksIC0tPgo8IS0tICAgICAgICAgICAgICAgIG5hbWVzX3RvID0gJ1JhY2UnLCAtLT4KPCEtLSAgICAgICAgICAgICAgICB2YWx1ZXNfdG8gPSAncHJvYmFiaWxpdGllcycpICU+JSAtLT4KPCEtLSAgIHJlY29kZV9yYWNlKCkgJT4lIC0tPgo8IS0tICAgZmlsdGVyKCFpcy5uYShwcm9iYWJpbGl0aWVzKSkgJT4lICAtLT4KPCEtLSAgIGdyb3VwX2J5KFJhY2UpICU+JSAtLT4KPCEtLSAgIGFkZF9jb3VudCgpICU+JSAtLT4KPCEtLSAgIHN1bW1hcmlzZSggLS0+CjwhLS0gICAgIG1lYW5fcHJvYiA9IG1lYW4ocHJvYmFiaWxpdGllcywgbmEucm0gPSBUKSwgLS0+CjwhLS0gICAgIHNkX3Byb2IgPSBzZChwcm9iYWJpbGl0aWVzLCBuYS5ybSA9IFQpLCAtLT4KPCEtLSAgICAgbiA9IG1lYW4obiksIC0tPgo8IS0tICAgICBtZV9wcm9iID0gYWxwaGFfdGhyZXNob2xkICogc2RfcHJvYiAvIHNxcnQobikgLS0+CjwhLS0gICApICU+JSAtLT4KPCEtLSAgIHVuZ3JvdXAoKSAgLS0+CjwhLS0gYGBgIC0tPgoKCmBgYHtyfQpzZXNzaW9uSW5mbygpCmBgYAo=