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Abstract

Existing guidelines in statistical modeling for genomics hold that simpler models have advantages
over more complex ones. Potential advantages include cost, interpretability, and improved
generalization across datasets or biological contexts. In cancer transcriptomics, this manifests as a
preference for small “gene signatures”, or groups of genes whose expression is used to de�ne cancer
subtypes or suggest therapeutic interventions. To test the assumption that small gene signatures
generalize better, we examined the generalization of mutation status prediction models across
datasets (from cell lines to human tumors and vice-versa) and contexts (holding out entire cancer
types from pan-cancer data). We compared two simple procedures for model selection, one that
exclusively relies on cross-validation performance and one that combines cross-validation
performance with regularization strength. We did not observe that more regularized signatures
generalized better. This result held across multiple problems and both linear models (LASSO logistic
regression) and non-linear ones (neural networks). When the goal of an analysis is to produce
generalizable predictive models, we recommend choosing the ones that perform best on held-out
data or in cross-validation, instead of those that are smaller or more regularized.



Introduction

Gene expression datasets are typically “wide”, with many gene features and relatively few samples.
These feature-rich datasets present obstacles in many aspects of machine learning, including
over�tting and multicollinearity, and challenges in interpretation. To facilitate the use of feature-rich
gene expression data in machine learning models, feature selection and/or dimension reduction are
commonly used to distill a more condensed data representation from the input space of all genes
[1,2]. The intuition is that many gene expression features are likely irrelevant to the prediction
problem, redundant, or contain no meaningful variation across samples, so transforming them or
selecting a subset can generate a more reliable predictor.

In cancer transcriptomics, this preference for small, parsimonious sets of genes can be seen in the
popularity of “gene signatures”. These are groups of genes whose expression levels are used to de�ne
cancer subtypes or to predict prognosis or therapeutic response [3,4]. Many studies specify the size of
the signature in the paper’s title or abstract, suggesting that the fewer genes in a gene signature, the
better, e.g. [5,6,7]. Clinically, there are many reasons why a smaller gene signature may be preferable,
including cost (fewer genes may be less expensive to pro�le or validate, whereas a large signature
likely requires a targeted array or NGS analysis [8]) and interpretability (it is easier to reason about the
function and biological role of a smaller gene set than a large one since even disjoint gene signatures
tend to converge on common biological pathways [9,10]).

Behind much of this work, there is an underlying assumption that smaller gene signatures tend to be
more robust: that for a new patient or in a new biological context, a smaller gene set or more
parsimonious model will be more likely to maintain its predictive performance than a larger one.
Similar ideas are described in the statistics literature, suggesting that simpler models with
performance that is comparable to the best model are more likely to perform robustly across datasets
or resist over�tting [11,12]. Although these assumptions have rarely been formally stated or
systematically tested in genomics applications, they are often included in guidelines or rules of thumb
for applied statistical modeling or machine learning in biology, e.g. [13,14,15].

In this study, we sought to test the robustness assumption directly by evaluating model generalization
across biological contexts, inspired by previous work on domain adaptation and transfer learning in
cancer transcriptomics [16,17,18]. We used two large, heterogeneous public cancer datasets: The
Cancer Genome Atlas (TCGA) for human tumor sample data [19], and the Cancer Cell Line
Encyclopedia (CCLE) for human cell line data [20]. These datasets contain overlapping -omics data
types derived from distinct data sources, allowing us to quantify model generalization across data
sources. In addition, each dataset contains samples from a wide range of di�erent cancer
types/tissues of origin, allowing us to quantify model generalization across cancer types. We trained
both linear and non-linear models to predict mutation status (presence or absence) from RNA-seq
gene expression for approximately 70 cancer driver genes, across varying levels of model simplicity
and degrees of regularization, resulting in a variety of gene signature sizes. We compared two simple
procedures for model selection, one that combines cross-validation performance with model
parsimony and one that only relies on cross-validation performance, for each classi�er in each
context.

Our results suggest that, in general, mutation status classi�cation models that perform well in cross-
validation within a biological context also generalize well across biological contexts. There are some
individual genes and some individual cancer types where more regularized well-performing models
outperform the best-performing model. However, we do not observe a systematic generalization
advantage for smaller/more regularized models across all genes and cancer types. These results
provide evidence that good cross-validation performance within a biological context (data source or
cancer type) is a su�cient proxy for robust performance across contexts.



Methods

Mutation data download and preprocessing

To generate binary mutated/non-mutated gene labels for our machine learning model, we used
mutation calls for TCGA samples from MC3 [21] and copy number threshold calls from GISTIC2.0 [22].
MC3 mutation calls were downloaded from the Genomic Data Commons (GDC) of the National Cancer
Institute, at https://gdc.cancer.gov/about-data/publications/pancanatlas. Thresholded copy number
calls are from an older version of the GDC data and are available here:
https://�gshare.com/articles/dataset/TCGA_PanCanAtlas_Copy_Number_Data/6144122. We removed
hypermutated samples, de�ned as two or more standard deviations above the mean non-silent
somatic mutation count, from our dataset to reduce the number of false positives (i.e., non-driver
mutations). Any sample with either a non-silent somatic variant or a copy number variation (copy
number gain in the target gene for oncogenes and copy number loss in the target gene for tumor
suppressor genes) was included in the positive set; all remaining samples were considered negative
for mutation in the target gene.

We followed a similar procedure to generate binary labels for cell lines from CCLE, using the data
available on the DepMap download portal at https://depmap.org/portal/download/all/. Mutation
information was retrieved from the OmicsSomaticMutations.csv  data �le, and copy number
information was retrieved from the OmicsCNGene.csv  data �le, both from the 22Q2 public release.
We thresholded the CNV log-ratios provided by CCLE into binary gain/loss calls using a lower
threshold of log2(3/2) (i.e. cell lines with a log-ratio below this threshold were considered to have a full
copy loss in the corresponding gene), and an upper threshold of log2(5/2) (i.e. cell lines with a log-ratio
above this threshold were considered to have a full copy gain in the corresponding gene). After
applying the same hypermutation criteria that we used for TCGA, no cell lines in CCLE were identi�ed
as hypermutated. After preprocessing, 1402 cell lines with mutation and copy number data remained.
We then combined non-silent point mutations and copy number gain/loss information into binary
labels using the same criteria as for TCGA.

Gene expression data download and preprocessing

RNA sequencing data for TCGA was downloaded from GDC at the same link provided above for the
Pan-Cancer Atlas. We discarded non-protein-coding genes and genes that failed to map, and removed
tumors that were measured from multiple sites. After �ltering to remove hypermutated samples and
taking the intersection of samples with both mutation and gene expression data, 9074 TCGA samples
remained.

RNA sequencing data for CCLE was downloaded from the DepMap download portal in the 
CCLE_expression.csv  data �le, from the 22Q2 public release. After taking the intersection of CCLE

cell lines with both mutation and gene expression data, 1402 cell lines remained. For experiments
making predictions across datasets (i.e., training models on TCGA and evaluating performance on
CCLE, or vice-versa) we took the intersection of genes in both datasets, resulting in 16041 gene
features. For experiments where only TCGA data was used (i.e., evaluating models on held-out cancer
types), we used all 16148 gene features present in TCGA after the �ltering described above.

Cancer gene set construction

In order to study mutation status classi�cation for a diverse set of cancer driver genes, we started
with the set of 125 frequently altered genes from Vogelstein et al. 2013 [23] (all genes from Table S2A).

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://figshare.com/articles/dataset/TCGA_PanCanAtlas_Copy_Number_Data/6144122
https://depmap.org/portal/download/all/


For each target gene, to ensure that the training dataset was reasonably balanced (i.e., that there
would be enough mutated samples to train an e�ective classi�er), we included only cancer types with
at least 15 mutated samples and at least 5% mutated samples, which we refer to here as “valid”
cancer types. In some cases, this resulted in genes with no valid cancer types, which we dropped from
the analysis. Out of the 125 genes originally listed in the Vogelstein et al. cancer gene set, we retained
71 target genes for the TCGA to CCLE analysis, and 66 genes for the CCLE to TCGA analyses. For these
analyses, each gene needed at least one valid cancer type in TCGA and one valid cancer type in CCLE,
to construct the train and test sets. For the cancer type holdout analysis, we retained 56 target genes:
in this case, each gene needed at least two valid cancer types in TCGA to be retained, one to train on
and one to hold out.

Classi�er setup and cross-validation design

We trained logistic regression classi�ers to predict whether or not a given sample had a mutational
event in a given target gene using gene expression features as explanatory variables. Our model was
trained on gene expression data (X) to predict somatic mutation presence or absence (y) in a target
gene. To control for varying mutation burden per sample, we included log10(sample mutation count)
in our models as a covariate. Since gene expression datasets tend to have many dimensions and
comparatively few samples, we used a LASSO penalty to perform feature selection [24]. LASSO logistic
regression has the ability to generate sparse models (some or most coe�cients are 0), as well as
having a single tunable hyperparameter which can be easily interpreted as an indicator of
regularization strength/model simplicity.

LASSO ( -penalized) logistic regression �nds the feature weights  solving the following
optimization problem:

where  denotes a sample in the dataset,  denotes features (gene expression
measurements) from the given sample,  denotes the label (mutation presence/absence)
for the given sample, and  denotes the negative log-likelihood of the observed data given a
particular choice of feature weights, i.e.

Given weight values , it is straightforward to predict the probability of a positive label (mutation in
the target gene)  for a test sample :

and the probability of no mutation in the target gene, , is given by (1 - the above

quantity).

This optimization problem leaves one hyperparameter to select: , which controls the inverse of the
strength of the L1 penalty on the weight values (i.e. regularization strength scales with ). Although

the LASSO optimization problem does not have a closed form solution, the loss function is convex,
and iterative optimization algorithms are commonly used for �nding reasonable solutions. For �xed
values of , we solved for  using scikit-learn ’s LogisticRegression  method [25], which
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P(y∗ = 1 ∣ X∗; ŵ) =
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uses the coordinate descent optimization method implemented in liblinear  [26]. We selected this
implementation rather than the SGDClassifier  stochastic gradient descent implementation
because coordinate descent/ liblinear  tends to generate sparser models and does not depend on
a learning rate parameter, although after hyperparameter tuning performance is generally
comparable between the implementations [27].

To assess model selection across contexts (datasets and cancer types), we trained models using a
variety of LASSO parameters on 75% of the training dataset, holding out 25% of the training dataset as
the “cross-validation” set and also evaluating across contexts as the “test” set. We trained models
using  values evenly spaced on a dense logarithmic scale between (10-3, 103), which was where we
generally observed that performance varied the most, and a sparser logarithmic scale between (103,
107) in order to capture models with very little regularization that included all features. In other
words, the exact range we used is the output of the command: 
numpy.concatenate(numpy.logspace(-3, 3, 43), numpy.logspace(3, 7, 21)) .

This range of regularization strength/sparsity levels was intended to give evenly distributed coverage
across genes and cancer types that included “under�t” models (predicting only the mean or using very
few features, poor performance on all datasets), “over�t” models (performing perfectly on training
data but comparatively poorly on cross-validation and test data), and a wide variety of models in
between that typically included the best �ts to the cross-validation and test data. To assess variability
between train/CV splits, we used all 4 splits (25% holdout sets) x 2 random seeds for a total of 8
di�erent training sets for each gene, using the same test set (i.e. all of the held-out context, either one
cancer type or one dataset) in each case.

“Best model” vs. “smallest good model” analysis

For the “best” vs. “smallest good” model selection comparison, we started with 8 performance
measurements (4 cross-validation folds x 2 random seeds) for each LASSO parameter. We took the
mean over these 8 measurements to get a single performance measurement for each model (LASSO
parameter) on the holdout dataset, which has the same composition as the training set. We used
these per-parameter mean performance measurements to select the “best” model (LASSO parameter
with the best mean performance on the holdout dataset), and the “smallest good” model (strongest
LASSO parameter with mean performance within 1 standard error of the best mean performance
value on the holdout dataset, as implemented in the glmnet  R package’s lambda.1se  model
selection method [28]). For the distributions of di�erences shown in the Results, we took the
di�erence in mean performance for the “best” and “smallest good” models for each gene, with
positive di�erences indicating better performance for the “best” model and negative di�erences
better performance for the “smallest good” model, for each gene. Note that in each case, we are
comparing model selection procedures for models trained on the same data (same training set/cross-
validation split) and measuring the di�erence in model performance between procedures, so
correcting for the baseline AUPR is unnecessary here.

Neural network setup and parameter selection

As a tradeo� between computational cost and ability to represent non-linear decision boundaries,
inspired by the architecture of the intermediate-complexity model described in [29], we trained a
three-layer fully connected neural network with ReLU nonlinearities [30] to predict mutation status.
For the experiments described in the main paper, we varied the size of the �rst hidden layer in the
range {1, 2, 3, 4, 5, 10, 50, 100, 500, 1000}. We �xed the size of the second hidden layer to be half of
the size of the �rst hidden layer, rounded up to the nearest integer, and the size of the third hidden
layer was the number of classes, 2 in our case. Our models were trained for 100 epochs of mini-batch
stochastic gradient descent in PyTorch [31], using the Adam optimizer [32] and a �xed batch size of
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50. To select the remaining hyperparameters for each hidden layer size, we performed a random
search over 10 combinations, with a single train/test split strati�ed by cancer type, using the following
hyperparameter ranges: learning rate {0.1, 0.01, 0.001, 5e-4, 1e-4}, dropout proportion {0.1, 0.5, 0.75},
weight decay (L2 penalty) {0, 0.1, 1, 10, 100}. We used the same train/cross-validation split strategy
described above for one random seed and 4 cross-validation splits, generating 4 di�erent
performance measurements for each gene and hidden layer size.

Although L1 regularization can be used to more directly induce model sparsity in convex settings, we
note that using L1 regularization to control model complexity in neural networks is considerably more
complex. Simply adding an additional loss term is not enough to achieve convergence to a sparse
solution; the problem requires special optimizers and is the subject of ongoing research (see, e.g.,
[33]). For this reason, we focused on controlling NN model complexity via the size and number of
hidden layers, as well as the other approaches described above.

For the EGFR gene, we also ran experiments where we varied the dropout proportion and the weight
decay hyperparameter as the regularization axis, and selected the remaining hyperparameters
(including the hidden layer size) using a random search. In these cases, we used a �xed range for
dropout of {0.0, 0.05, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 0.95}, and a �xed range for weight
decay of {0.0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 10.0}. All neural network analyses
were performed on a Ubuntu 18.04 machine with a NVIDIA RTX 2060 GPU.



Results

Evaluating model generalization using public cancer data

We collected data from the TCGA Pan-Cancer Atlas and the Cancer Cell Line Encyclopedia to predict
the presence or absence of mutations in cancer genes, as a benchmark of cancer-related information
content across cancer types and contexts. We trained mutation status classi�ers across approximately
70 genes involved in cancer development and progression from Vogelstein et al. 2013 [23], using
LASSO logistic regression with gene expression (RNA-seq) values as predictive features, and
integrating point mutation and copy number data to label each sample as mutated or not mutated in
the target gene (Supplementary Note S1). We �t each classi�er across a variety of regularization
parameters, resulting in models with a variety of di�erent sparsity levels between the extremes of 0
nonzero features and all features included (Supplementary Figure S2). Inspired by the generalization
experiments across tissues and model systems in [16], we designed experiments to evaluate the
generalization of mutation status classi�ers across datasets (TCGA to CCLE and CCLE to TCGA) and
across biological contexts (cancer types) within TCGA, relative to a within-dataset baseline (Figure 1).

Figure 1:  Schematic of experimental design. The colors of the “dots” in the training/model selection/model evaluation
panels on the left correspond to train/CV/test curves in the following results �gures.

Generalization from human tumor samples to cell lines is more
e�ective than the reverse

To evaluate “cross-dataset” generalization, we trained mutation status classi�ers on human tumor
data from TCGA and evaluated them on cell line data from CCLE, as well as the reverse from CCLE to
TCGA. As an example, we examined EGFR, an oncogenic tyrosine kinase that is commonly mutated in
diverse cancer types and cancer cell lines, including lung cancer, colorectal cancer, and glioblastoma
[34,35]. For EGFR mutation status classi�ers trained on TCGA and evaluated on CCLE, we saw that
AUPR on cell lines was slightly worse than on held-out tumor samples, but comparable across



regularization levels/LASSO parameters (Figure 2A). On the other hand, EGFR classi�ers trained on
CCLE and evaluated on TCGA performed considerably worse on human tumor samples as compared
to held-out cell lines (Figure 2B). When we compared performance with norms of model coe�cient
vectors including the  norm that LASSO models explicitly optimize, as opposed to the LASSO
parameter values, observed performance trends were similar (Supplementary Figure S3).

To explore these tendencies more generally, we compared performance across all genes in the
Vogelstein et al. dataset, for both TCGA to CCLE and CCLE to TCGA generalization. We measured the
di�erence between performance on the holdout data within the training dataset and performance
across datasets, after correcting for the baseline frequency of mutation occurrence in the relevant
dataset (i.e. the expected AUPR value for a random classi�er). A positive di�erence indicates poor
generalization (better holdout performance than test performance) and a 0 or negative di�erence
indicates good generalization (comparable test performance to holdout performance). For
generalization from TCGA to CCLE, we observed that median AUPR di�erences were mostly centered
around 0 for most genes, with some exceptions at the extremes (Figure 2C; performance di�erences
on the y-axis). An example of a gene exhibiting poor generalization was IDH1, shown toward the left of
Figure 2C as having good performance on held-out TCGA data and poor performance on CCLE data.
IDH-mutant glioma cell lines are poorly represented compared to IDH-mutant patient tumors, which
may explain the di�culty of generalization to cell lines for IDH1 mutation classi�ers [36]. For
generalization from CCLE to TCGA, we observed a more pronounced upward shift toward better
performance on CCLE and worse on TCGA, with most genes performing better on the CCLE holdout
data and very few genes generalizing comparably to the TCGA samples (Figure 2D).

Figure 2:  A. EGFR mutation status prediction performance on training samples from TCGA (blue), held-out TCGA
samples (orange), and CCLE samples (green), across varying LASSO parameters. B. EGFR mutation status prediction
performance on training samples from CCLE (blue), held-out CCLE samples (orange), and TCGA samples (green). C.
Di�erence in mutation status prediction performance for models trained on TCGA (holdout data) and evaluated on CCLE
(test data), after correcting for baseline mutation frequency, across 71 genes from Vogelstein et al. For each gene, the
best model (LASSO parameter) was selected using holdout AUPR performance. Genes on x-axis are ordered by median
AUPR di�erence across cross-validation splits, from highest to lowest. D. Di�erence in mutation status prediction
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performance for models trained on CCLE (holdout data) and evaluated on TCGA (test data), across 66 genes from
Vogelstein et al.

“Best” and “smallest good” model selection strategies perform
comparably

To address the question of whether sparser or more parsimonious models tend to generalize better
or not, we implemented two model selection schemes and compared them for the TCGA to CCLE and
CCLE to TCGA mutation prediction problems (Figure 3A). The “best” model selection scheme chooses
the top-performing model (LASSO parameter) on the holdout dataset from the same source as the
training data and applies it to the test data from the other data source. The intention of the “smallest
good” model selection scheme is to balance parsimony with reasonable performance on the holdout
data, since simply selecting the smallest possible model (generally, the dummy regressor/mean
predictor) is not likely to generalize well.

To accomplish this, we rely on the “ lambda.1se ” heuristic used in the glmnet  R package for
generalized linear models, which is one of the default methods for parameter choice and model
selection [28]. We �rst identify models with performance within one standard error of the top-
performing model on the holdout dataset. Then, from this subset of relatively well-performing
models, we choose the smallest (i.e., strongest LASSO penalty) to apply to the test data. In both cases,
we exclusively use the holdout data to select a model and only apply the model to out-of-dataset
samples to evaluate generalization performance after model selection. Applying these criteria to both
the TCGA to CCLE and CCLE to TCGA prediction problems, we saw that model sizes (number of
nonzero gene expression features) tended to di�er by approximately an order of magnitude between
model selection approaches, with medians on the order of 100 nonzero features for the “best” models
and on the order of 10 nonzero features for the “smallest good” models (Supplementary Figure S4).
Still, there was considerable variation between target genes, and some best-performing models
included substantially more features than the median, including classi�ers we have previously
observed to perform well such as TP53, PTEN, and SETD2.

For TCGA to CCLE generalization, 37/71 genes (52.1%) had better performance for the “best” model,
and 24/71 genes (33.8%) had better generalization performance with the “smallest good” model. The
other 10 genes had the same “best” and “smallest good” model: in other words, the “smallest good”
model was also the best-performing overall, so the performance di�erence between the two was
exactly 0 (Figure 3B). For CCLE to TCGA generalization, 30/66 genes (45.5%) had better performance
for the “best” model and 25/66 (37.9%) for the “smallest good,” with the other 11 having the same
model ful�ll both criteria (Figure 3C). Overall, these results do not support the hypothesis that the
most parsimonious model generalizes the best: for both generalization problems there are slightly
more genes where the best-performing model on the holdout dataset is also the best-performing on
the test set, although there are some genes where the “smallest good” approach works well (CCLE ->
TCGA Wilcoxon signed-rank p=0.721, TCGA -> CCLE Wilcoxon signed-rank p=0.963).

We examined genes that fell into either category for TCGA to CCLE generalization (dotted lines on
Figure 3B). For NF1, the “best” model outperforms the “smallest good” model (Figure 3D). Comparing
holdout (orange) and cross-dataset (green) performance, both generally follow a similar trend, with
the cross-dataset performance near its peak when the holdout performance peaks at a regularization
parameter of . PIK3CA is an example of the opposite, a gene where the “smallest good”
model tends to outperform the “best” model (Figure 3E). In this case, better cross-dataset
performance occurs at a higher level of regularization (further left on the x-axis), at , than
the peak for the holdout performance, at . This suggests that a PIK3CA mutation status
classi�er that is more parsimonious, but that has slightly worse performance, does tend to generalize
more e�ectively across datasets from TCGA to CCLE.

α = 0.01

α = 0.019
α = 0.027



Figure 3:  A. Schematic of “best” vs. “smallest good” model comparison experiments. B. Distribution of performance
comparisons between “best” and “smallest good” model selection strategies, for TCGA -> CCLE generalization. Positive x-
axis values indicate better performance for the “best” model, negative values indicate better performance for the
“smallest good” model. C. Distribution of performance comparisons between “best” and “smallest good” model selection
strategies, for CCLE -> TCGA generalization. D. NF1 mutation status prediction performance generalizing from TCGA
(holdout, orange), to CCLE (green), with “best” and “smallest good” models labeled. E. PIK3CA mutation status prediction
performance generalizing from TCGA (holdout, orange), to CCLE (green), with “best” and “smallest good” models labeled.

Generalization across cancer types yields similar results to
generalization across datasets

To evaluate generalization across biological contexts within a dataset, we trained mutation prediction
classi�ers on all but one cancer type in TCGA, performed model selection on a holdout set strati�ed
by cancer type, and held out the remaining cancer type as a test set. We performed the same “best”
vs. “smallest good” analysis that was previously described, across 291 gene/holdout cancer type
combinations (Figure 4A). We observed 135/291 gene/cancer type combinations (46.4%) that had
better generalization performance with the “best” model, compared to 130/291 (44.7%) for the
“smallest good” model. The other 26 gene/cancer type combinations had the same “best” and
“smallest good” model and thus no di�erence in performance. This is consistent with our cross-
dataset experiments, with slightly more instances where the “best” model on the strati�ed holdout
data also generalizes the best, but no pronounced distributional shift in either direction (Wilcoxon
signed-rank p=0.599).



We looked in more detail at two examples of gene/cancer type combinations, one on either side of the
0 point for cross-cancer type generalization. For prediction of PIK3CA mutation status in rectal
adenocarcinoma (READ), we observed the best cross-cancer type performance for relatively low levels
of regularization/high x-axis values, at  (Figure 4B). For prediction of NF1 mutation status in
uterine corpus endometrial carcinoma (UCEC), on the other hand, we observed the best cross-cancer
generalization for a high level of regularization ( ), and generalization capability for the
best parameter on the strati�ed holdout set ( ) was lower (Figure 4C). It is also interesting to
note that in the previous experiments generalizing from TCGA to CCLE, we used PIK3CA as an
example of a gene where the “smallest good” model performs best and NF1 as an example where the
“best” model was selected, and this tendency was reversed for these two cancer types. This highlights
the importance of considering generalization to the cancer type or sample cohort of interest
independently of general trends for a particular classi�er, whenever possible.

We aggregated results across genes for each cancer type, looking at performance in the held-out
cancer type compared to performance on the strati�ed holdout set (Figure 4D). Cancer types that
were particularly di�cult to generalize to (better performance on strati�ed data than cancer type
holdout, or positive y-axis values) include testicular cancer (TGCT) and soft tissue sarcoma (SARC),
which are notable because they are not carcinomas like the majority of cancer types included in TCGA,
potentially making generalization harder. We also aggregated results across cancer types for each
gene, identifying a distinct set of genes where classi�ers tend to generalize poorly no matter what
cancer type is held out (Supplementary Figure S5). Included in this set of genes with poor
generalization performance are HRAS, NRAS, and BRAF, suggesting that a classi�er that combines
mutations in Ras pathway genes into a single “pathway mutation status” label (as described in [37], or
using more general computational approaches such as [38,39]) could be a better approach than
separate classi�ers for each gene.

In the cancer type aggregation plot (Figure 4D), thyroid carcinoma (THCA) stood out as a carcinoma
that had poor performance when held out. In our experiments, the only genes in which THCA is
included as a held-out cancer type are BRAF and NRAS; generalization performance for both genes is
below cross-validation performance, but slightly worse for NRAS than BRAF (Supplementary Figure
S6). Previous work suggests that BRAF mutation tends to have a di�erent functional signature in THCA
than other cancer types, and withholding THCA from the training set improved classi�er performance,
which could at least in part explain the di�culty of generalizing to THCA we observe [37].

α = 0.027

α = 0.0072
α = 0.01



Figure 4:  A. Distribution of performance comparisons between “best” and “smallest good” model selection strategies,
for generalization across TCGA cancer types. Each point is a gene/cancer type combination; positive x-axis values
indicate better performance for the “best” model and negative values indicate better performance for the “smallest
good” model. B. PIK3CA mutation status prediction performance generalizing from other cancer types in TCGA (strati�ed
holdout, orange) to rectal adenocarcinoma (READ, green), with “best” and “smallest good” models labeled. C. NF1
mutation status prediction performance generalizing from other cancer types in TCGA (strati�ed holdout, orange) to
uterine corpus endometrial carcinoma (UCEC, green), with “best” and “smallest good” models labeled. D. Distributions of
performance di�erence between CV data (same cancer types as train data) and holdout data (cancer types not
represented in train data), by held-out cancer type, after correcting for baseline mutation frequency in each cancer type.
Each point is a gene whose mutation status classi�er was used to make predictions on out-of-dataset samples in the
relevant cancer type.

Restricting neural network hidden layer size does not improve
generalization

To test whether or not �ndings generalize to non-linear models, we trained a 3-layer neural network
to predict mutation status from gene expression for generalization from TCGA to CCLE, and we varied
the size of the �rst hidden layer to control regularization/model complexity. We �xed the size of the
second hidden layer to be half the size of the �rst layer, rounded up to the nearest integer; further
details in Methods. For EGFR mutation status prediction, we saw that performance for small hidden
layer sizes was noisy, but generally lower than for higher hidden layer sizes on train, holdout, and test
sets, re�ecting “under�tting” or high bias (Figure 5A). On average, over all 71 genes from Vogelstein et
al., performance on both held-out TCGA data and CCLE data tends to increase until a hidden layer size
of 10-50, then �atten (Figure 5B). To explore additional approaches to neural network regularization,
we also tried varying dropout and weight decay for EGFR and KRAS mutation status classi�cation while
holding the hidden layer size constant. Results followed a similar trend, with generalization
performance generally tracking performance on holdout data (Supplementary Figure S7). We also
preprocessed the input gene expression features using PCA, and varied the number of PCA features
retained as input to the neural network; for EGFR the best generalization performance and holdout



performance both occurred at 1000 PCs, but for KRAS the model generalized better to cell line data
for fewer PCs than its peak holdout performance (Supplementary Figure S8).

It can be challenging to measure which hidden layer sizes tended to perform relatively well or poorly
across classi�ers, since di�erent genes may have di�erent baseline performance AUPR values and
overall classi�er e�ect sizes. In order to summarize across genes, for each gene, we ranked the range
of hidden layer sizes by the corresponding models’ generalization performance on CCLE (Figure 5C).
Concretely, for a particular hidden layer size, low ranks represent good performance, and high ranks
represent poor performance. We then visualized the distribution of ranks above and below the
median rank of 5.5/10, for each hidden layer size across all genes. In summary, for a given hidden
layer size, a high proportion of ranks above the median (True, or blue bar) signi�es poor overall
performance for that hidden layer size, and a high proportion of ranks below the median (False, or
orange bar) signi�es good performance. We saw that small hidden layer sizes tended to generalize
poorly (<5, but most pronounced for 1 and 2), and intermediate hidden layer sizes tended to
generalize well (10-100, and sometimes 500/1000). This suggests that some degree of parsimony or
simplicity could be useful, but very simple models do not tend to generalize well.

We also performed the same “best”/“smallest good” analysis as with the linear models, using hidden
layer size as the regularization axis instead of LASSO regularization strength. We observed a
distribution centered around 0, suggesting that the “best” and “smallest good” models tend to
generalize similarly (Figure 5D). 28/71 genes (45.2%) had better generalization performance with the
“best” model, compared to 21/71 (28.6%) for the “smallest good” model and 22 with the same “best”
and “smallest good” model. We extended our analyses to two additional non-linear model classes as
well, for TCGA to CCLE generalization: XGBoost gradient boosting classi�cation, and a deeper neural
network with 5 hidden layers. For XGBoost, using the n_estimators  (number of tree estimators to
combine) and max_depth  (maximum depth of each tree) parameters to control model complexity,
we saw a similar relationship between holdout performance on TCGA and generalization performance
on CCLE as for the LASSO experiments, although model performance was generally more stable
across parameter settings (Supplementary Figure S9). For the 5-layer neural networks, the
generalization results were similar to the 3-layer neural networks, although under�tting/high bias was
more obvious for very small hidden layer sizes and there was a slightly more pronounced preference
for larger hidden layer sizes overall (Supplementary Figure S10).

Figure 5:  A. EGFR mutation status prediction performance on training samples from TCGA (blue), held-out TCGA
samples (orange), and CCLE samples (green), across varying neural network hidden layer sizes. B. Mutation status
prediction performance summarized across all genes from Vogelstein et al. on training samples from TCGA (blue), held-
out TCGA samples (orange), and CCLE samples (green), across varying neural network hidden layer sizes. C. Distribution



of ranked performance values above/below the median rank for each gene, for each of the hidden layer sizes evaluated.
Lower ranks indicate better performance and higher ranks indicate worse performance, relative to other hidden layer
sizes. D. Distribution of performance comparisons between “best” and “smallest good” model selection strategies, for
TCGA -> CCLE generalization with neural network hidden layer size as the regularization axis. Positive x-axis values
indicate better performance for the “best” model, negative values indicate better performance for the “smallest good”
model.

Discussion

Using public cancer genomics and transcriptomics data from TCGA and CCLE, we studied
generalization of mutation status classi�ers for a wide variety of cancer driver genes. We designed
experiments to evaluate generalization across biological contexts by holding out cancer types in TCGA,
and to evaluate generalization across datasets by training models on TCGA and evaluating them on
CCLE, and vice-versa. We found that, in general, smaller or more parsimonious models do not tend to
generalize more e�ectively across cancer types or across datasets, and in the absence of prior
knowledge about a prediction problem, simply choosing the model that performs the best on a
holdout dataset is at least as e�ective for selecting models that generalize. Given that similar “smallest
good” heuristics are used broadly across genomics studies (see, e.g. [40,41,42]), we expect these
results to have implications on current practices.

Our results were similar in both linear models (LASSO logistic regression) and non-linear deep neural
networks when using hidden layer size as the regularization parameter of interest. In our non-linear
model experiments, we did not observe better generalization across datasets for fully connected
neural networks with fewer hidden layer nodes, and our preliminary results indicated a similar trend
for dropout and weight decay. Compared to linear models, it is less clear how to de�ne a “small” or
“parsimonious” neural network model since there are many regularization techniques that one may
use to control complexity. Rather than simply removing nodes and keeping the network fully
connected, another approach to parsimony could be to select an inductive bias to guide the size
reduction of the network. Existing examples include network structures guided by protein-protein
interaction networks or function/pathway ontologies [43,44,45,46]. It is possible that a smaller neural
network with a structure that corresponds more appropriately to the prediction problem would
achieve better generalization results, although choosing an apt network structure or data source can
be a challenging aspect of such e�orts.

For generalization from CCLE to TCGA, we observed that performance was generally worse on human
tumor samples from TCGA than for held-out cell lines. This could, at least in part, be a function of
sample size: the number of cell lines in CCLE is approximately an order of magnitude smaller than the
number of tumor samples in TCGA (~10,000 samples in TCGA vs. ~1,500 cell lines in CCLE, although
the exact number of samples used to train and evaluate our classi�ers varies by gene, see Methods
for further detail). There are also plausible biological and technical explanations for the di�culty of
generalizing to human tumor samples. This result could re�ect the imperfect and limited nature of
cancer cell lines as a model system for human tumors, which previous studies have pointed out
[47,48,49]. In addition, the CCLE data is collected and processed uniformly, as described in [20], while
the TCGA data is processed by a uniform pipeline but collected from a wide variety of di�erent cancer
centers around the US [19].

When we ranked cancer types in order of their generalization di�culty aggregated across genes, we
noticed a slight tendency toward non-carcinoma cancer types (TGCT, SARC, SKCM) being di�cult to
generalize to. It has been pointed out in other biological data types that holding out entire contexts or
domains is necessary for a full picture of generalization performance [50,51], which our results
corroborate. This highlights a potential weakness of using TCGA’s carcinoma-dominant pan-cancer
data as a training set for a broad range of tasks, for instance in foundation models which are
becoming feasible for some genomics applications [52,53,54]. One caveat of our analysis is that each



cancer type is included in the training data or held out for a di�erent subset of genes, so it is di�cult
to detangle gene-speci�c e�ects (some mutations have less distinguishable functional e�ects on gene
expression than others) from cancer type-speci�c e�ects (some cancer types are less similar to each
other than others) on prediction performance using our experimental design.

Other aspects of TCGA that may make it less representative for certain prediction problems is that it is
composed of primary tumor samples from adult patients with relatively high quality (fresh frozen,
generally high purity although this varies by tissue [55]), so it is possible that generalization to
metastatic samples, pediatric patients, or lower-quality (e.g. formalin-�xed para�n-embedded, or
FFPE) clinical samples would present di�erent properties. Similarly, mutation calling in CCLE cell lines
is limited by the lack of a matched normal reference, although we generally observed reasonable
generalization to cell lines suggesting that the quality of mutation calls is likely adequate in the genes
we considered. Overall, however, we believe the size and tissue representation of TCGA and CCLE
make them apt benchmarks for model performance in cancer -omics.

Conclusion

Without directly evaluating model generalization, it is tempting to assume that simpler models will
generalize better than more complex models. Studies in the statistics and machine learning literature
suggest this rule of thumb [13,14,15,56], and model selection approaches sometimes incorporate
criteria to encourage simpler models that do not �t the data as closely. These ideas have taken root in
genomics, although they are less commonly stated formally or studied systematically [40,41,42].
However, we do not observe strong evidence that simpler models inherently generalize more
e�ectively than more complex ones. There may be other reasons to train small models or to look for
the best model of a certain size/sparsity, such as biomarker interpretability or assay cost. Our results
underscore the importance of de�ning clear goals for each analysis. If the goal is to achieve
generalization across contexts or datasets, whenever possible we recommend directly evaluating
generalization. When it is not feasible, we recommend choosing the model that performs the best on
unseen data via cross-validation or a holdout dataset.

Data and code availability

The data from TCGA analyzed during this study were previously published as part of the TCGA Pan-
Cancer Atlas project [19], and are available from the NIH NCI Genomic Data Commons (GDC). The data
from CCLE analyzed during this study were previously published [20], and are available from the
Broad Institute’s DepMap Portal. Raw classi�cation results, performance �gures for all genes in the
Vogelstein et al. 2013 dataset, and parameter selection results and performance comparisons for
each individual gene in the “best vs. smallest good” analyses are available on Figshare at
https://doi.org/10.6084/m9.�gshare.23826450, under a CC0 license. The scripts used to download and
preprocess the datasets for this study are available at https://github.com/greenelab/pancancer-
evaluation/tree/master/00_process_data. Scripts for TCGA <-> CCLE comparisons (Figures 2 and 3) and
neural network experiments (Figure 5) are available in the https://github.com/greenelab/pancancer-
evaluation/tree/master/08_cell_line_prediction directory. Scripts for TCGA cancer type comparisons
(Figure 4) are available in the https://github.com/greenelab/pancancer-
evaluation/tree/master/02_cancer_type_classi�cation directory. All scripts are available under the
open-source BSD 3-clause license.
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Supplementary Material

Supplementary Note S1

We were interested in exploring the extent to which excluding the target gene’s expression pro�le
from the input features a�ects performance, if at all. Additionally, since our labels include both point
mutations and copy number changes, we sought to determine whether the answer to this question
depends on the inclusion of copy number changes in the label set for a particular gene. To test this
across driver genes, we calculated the contribution of single nucleotide variant (SNV) and copy
number variant (CNV) changes to each gene’s positively labeled sample set, and picked ten genes
where CNV changes make up a relatively large proportion of positive labels, and ten genes where CNV
changes make up a small proportion of positive labels. Genes where positive labels commonly result
from CNV changes are as follows:

Gene SNV sample count SNV + CNV count SNV / (SNV + CNV) ratio

BAP1 105 146 0.719

CDKN2A 288 1308 0.220

EGFR 192 444 0.432

ERBB2 129 440 0.293

GNAS 99 266 0.372

KDM6A 163 295 0.553

PDGFRA 131 235 0.557

PTEN 584 985 0.593

RB1 259 522 0.496

SMAD4 131 289 0.453

And genes where samples are rarely positively labeled based on CNV changes:

Gene SNV sample count SNV + CNV count SNV / (SNV + CNV) ratio

ARID1A 588 629 0.934

ATRX 455 508 0.896

BRAF 569 605 0.940

CTNNB1 297 304 0.977

EP300 256 265 0.966

IDH1 414 415 0.997

NRAS 169 170 0.994

RNF43 152 157 0.968

SETD2 252 279 0.903

TP53 3305 3372 0.980

We also considered baseline model performance in the choice of these gene sets. If a gene has a very
low or very high SNV / (SNV + CNV) ratio but the associated classi�er generally performs poorly, we



wouldn’t expect to observe a performance change, regardless of the input features. For this
experiment, the 20 genes we selected all had a reasonably high performance baseline, to maximize
our ability to observe changes if they occur.

We visualized the mean di�erence in performance for the best-performing and “smallest good”
models (LASSO parameters) with the “control” set of features, as compared to the best-performing
and “smallest good” models with the “drop target” set of features (all of the gene expression features
except the target gene), shown in Figure S1. In general, we do observe that performance tends to be
better for the “control” models, although there are some exceptions (EGFR, ERBB2, PDGFRA, PTEN,
EP300) where the “drop target” model actually performs slightly better. We do observe that there are
some genes (BAP1, CDKN2A, KDM6A, RB1, ARID1A, ATRX) where performance decreases considerably
when the target gene is not present in the feature set. For both the “best” and “smallest good” model
selection approaches, this e�ect is slightly more consistent in the “frequent CNV” gene set than in the
“rare CNV” gene set (mean control - drop target di�erence of 0.021/0.019 in the “frequent CNV” genes
as compared to 0.009/0.004 in the “rare CNV” genes), but in both cases there is considerable variance
between genes.

Based on these results, given the observation that the mean di�erence in model performance is fairly
small in both “frequent CNV” and “rare CNV” cases, and for both model selection approaches, we
conclude that combining point mutation and CNV data and including the target gene in the feature set
are reasonable general rules for our pan-cancer and pan-gene study. In general, our focus is less on
individual prediction performance and more on model complexity, which is another degree removed
from the individual prediction performance. In addition, including the target gene would seem most
likely to increase the bene�t of smaller models, as the single-gene could be considered particularly
information rich. While these results don’t seem to heavily in�uence our experiment examining
generality, the exceptions we noted above emphasize the importance of considering the biological
context in applications to speci�c driver genes or prediction problems.

Figure S1:  Bar plot showing di�erence in performance (AUPR) between models including and excluding the target
gene, for genes where CNV changes are (top) and are not (bottom) frequently included in the label set, colored by model



selection approach. Positive values represent better performance for the “control” model, and negative values better
performance for the “drop target” model.



Figure S2:  Number of nonzero coe�cients (model sparsity) across varying regularization parameters, for 71 genes
(TCGA to CCLE prediction, top) and 70 genes (CCLE to TCGA prediction, bottom) in the Vogelstein et al. dataset.



Figure S3:  Value of norm of coe�cient vector vs. performance, for EGFR mutation status prediction from TCGA to CCLE.
The x-axis shows the value of each norm for each model, binned into quantiles in order to plot results on the same axis
since each norm has a di�erent scale.



Figure S4:  Distributions of number of features selected by the “best” and “smallest good” models, across seeds and
folds, for TCGA to CCLE (top) and CCLE to TCGA (bottom) mutation prediction. Dotted lines show the median number of
features for the best (blue) and smallest good (orange) numbers across genes: TCGA to CCLE - median of 144 features
for the “best” approach and 17 features for the “smallest good” approach; CCLE to TCGA - median of 80 features for the
“best” approach and 26 features for the “smallest good” approach.



Figure S5:  Distributions of performance di�erence between cross-validation data (same cancer types as training data)
and holdout data (cancer types not represented in data), grouped by held-out gene. Each point shows performance for
a single train/validation split for one cancer type that was held out, using a classi�er trained to predict mutations in the
given gene.



Figure S6:  Top row: Distribution of performance di�erences when thyroid cancer (THCA) data is held out from training
set across seeds/folds, grouped by gene. Bottom row: Distributions of performance di�erences for genes where THCA is
included in training/holdout sets, relative to other cancer types that are included.



Figure S7:  Performance vs. dropout parameter (�rst column) and weight decay strength (second column), for EGFR
mutation prediction (�rst row) and KRAS mutation prediction (second row) using a 3-layer fully connected neural
network trained on TCGA (blue/orange) and evaluated on CCLE (green).



Figure S8:  Performance vs. number of gene expression principal components, used as input to a 3-layer fully
connected neural network trained on TCGA (blue/orange) and evaluated on CCLE (green), for EGFR and KRAS mutation
status prediction.



Figure S9:  Performance across regularization parameter values for XGBoost mutation status classi�cation, for
generalization from TCGA to CCLE. Top row shows performance for EGFR across varying values of num_estimators
and max_depth  (Panel A), and for max_depth=8  across a range of num_estimators  (Panel B). Panel C summarizes
the distribution of performance comparisons between “best” vs. “smallest good” num_estimators  (33/71 genes best >
smallest good, 17/71 smallest good > best, 20/71 best = smallest good).



Figure S10:  Summary of performance for TCGA to CCLE generalization using 5-layer fully connected neural network,
analogous to results shown in Figure 5 for 3-layer network. All experiments used expression of top 8000 genes by mean
absolute deviation, for computational reasons. In the “best” vs. “smallest good” analysis, 27/71 genes had better
performance for the best model, and 17/71 had better performance for the smallest good model, with 26/71 genes
where the best and smallest good models were equal.


