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Abstract

Deep learning describes a class of machine learning algorithms that are capable of combining raw
inputs into layers of intermediate features. These algorithms have recently shown impressive results
across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex
and often ill-understood. Hence, deep learning techniques may be particularly well-suited to solve
problems of these �elds. We examine applications of deep learning to a variety of biomedical
problems—patient classi�cation, fundamental biological processes, and treatment of patients—and
discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses
unique challenges. Following from an extensive literature review, we �nd that deep learning has yet to
revolutionize biomedicine or de�nitively resolve any of the most pressing challenges in the �eld, but
promising advances have been made on the prior state of the art. Even though improvements over
previous baselines have been modest in general, the recent progress indicates that deep learning
methods will provide valuable means for speeding up or aiding human investigation. Though progress
has been made linking a speci�c neural network’s prediction to input features, understanding how
users should interpret these models to make testable hypotheses about the system under study
remains an open challenge. Furthermore, the limited amount of labeled data for training presents
problems in some domains, as do legal and privacy constraints on work with sensitive health records.
Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the
potential to transform several areas of biology and medicine.

Introduction to deep learning

Biology and medicine are rapidly becoming data-intensive. A recent comparison of genomics with
social media, online videos, and other data-intensive disciplines suggests that genomics alone will
equal or surpass other �elds in data generation and analysis within the next decade [1]. The volume
and complexity of these data present new opportunities, but also pose new challenges. Automated
algorithms that extract meaningful patterns could lead to actionable knowledge and change how we
develop treatments, categorize patients, or study diseases, all within privacy-critical environments.

The term deep learning has come to refer to a collection of new techniques that, together, have
demonstrated breakthrough gains over existing best-in-class machine learning algorithms across
several �elds. For example, over the past �ve years these methods have revolutionized image
classi�cation and speech recognition due to their �exibility and high accuracy [2]. More recently, deep
learning algorithms have shown promise in �elds as diverse as high-energy physics [3], computational
chemistry [4], dermatology [5], and translation among written languages [6]. Across �elds, “o�-the-
shelf” implementations of these algorithms have produced comparable or higher accuracy than
previous best-in-class methods that required years of extensive customization, and specialized
implementations are now being used at industrial scales.

Deep learning approaches grew from research on arti�cial neurons, which were �rst proposed in
1943 [7] as a model for how the neurons in a biological brain process information. The history of
arti�cial neural networks—referred to as “neural networks” throughout this article—is interesting in
its own right [8]. In neural networks, inputs are fed into the input layer, which feeds into one or more
hidden layers, which eventually link to an output layer. A layer consists of a set of nodes, sometimes
called “features” or “units,” which are connected via edges to the immediately earlier and the
immediately deeper layers. In some special neural network architectures, nodes can connect to
themselves with a delay. The nodes of the input layer generally consist of the variables being
measured in the dataset of interest—for example, each node could represent the intensity value of a
speci�c pixel in an image or the expression level of a gene in a speci�c transcriptomic experiment. The
neural networks used for deep learning have multiple hidden layers. Each layer essentially performs



feature construction for the layers before it. The training process used often allows layers deeper in
the network to contribute to the re�nement of earlier layers. For this reason, these algorithms can
automatically engineer features that are suitable for many tasks and customize those features for one
or more speci�c tasks.

Deep learning does many of the same things as more familiar machine learning approaches. In
particular, deep learning approaches can be used both in supervised applications—where the goal is
to accurately predict one or more labels or outcomes associated with each data point—in the place of
regression approaches, as well as in unsupervised, or “exploratory” applications—where the goal is to
summarize, explain, or identify interesting patterns in a data set—as a form of clustering. Deep
learning methods may in fact combine both of these steps. When su�cient data are available and
labeled, these methods construct features tuned to a speci�c problem and combine those features
into a predictor. In fact, if the dataset is “labeled” with binary classes, a simple neural network with no
hidden layers and no cycles between units is equivalent to logistic regression if the output layer is a
sigmoid (logistic) function of the input layer. Similarly, for continuous outcomes, linear regression can
be seen as a single-layer neural network. Thus, in some ways, supervised deep learning approaches
can be seen as an extension of regression models that allow for greater �exibility and are especially
well-suited for modeling non-linear relationships among the input features. Recently, hardware
improvements and very large training datasets have allowed these deep learning techniques to
surpass other machine learning algorithms for many problems. In a famous and early example,
scientists from Google demonstrated that a neural network “discovered” that cats, faces, and
pedestrians were important components of online videos [9] without being told to look for them.
What if, more generally, deep learning takes advantage of the growth of data in biomedicine to tackle
challenges in this �eld? Could these algorithms identify the “cats” hidden in our data—the patterns
unknown to the researcher—and suggest ways to act on them? In this review, we examine deep
learning’s application to biomedical science and discuss the unique challenges that biomedical data
pose for deep learning methods.

Several important advances make the current surge of work done in this area possible. Easy-to-use
software packages have brought the techniques of the �eld out of the specialist’s toolkit to a broad
community of computational scientists. Additionally, new techniques for fast training have enabled
their application to larger datasets [10]. Dropout of nodes, edges, and layers makes networks more
robust, even when the number of parameters is very large. Finally, the larger datasets now available
are also su�cient for �tting the many parameters that exist for deep neural networks. The
convergence of these factors currently makes deep learning extremely adaptable and capable of
addressing the nuanced di�erences of each domain to which it is applied.

Figure 1:  Neural networks come in many di�erent forms. Left: a key for the various types of nodes used in neural
networks. Simple FFNN: a feed forward neural network in which inputs are connected via some function to an output
node and the model is trained to produce some output for a set of inputs. MLP: the multi-layer perceptron is a feed
forward neural network in which there is at least one hidden layer between the input and output nodes. CNN: the
convolutional neural network is a feed forward neural network in which the inputs are grouped spatially into hidden
nodes. In the case of this example, each input node is only connected to hidden nodes alongside their neighboring input
node. Autoencoder: a type of MLP in which the neural network is trained to produce an output that matches the input



to the network. RNN: a deep recurrent neural network is used to allow the neural network to retain memory over time
or sequential inputs. This �gure was inspired by the Neural Network Zoo by Fjodor Van Veen.

This review discusses recent work in the biomedical domain, and most successful applications select
neural network architectures that are well suited to the problem at hand. We sketch out a few simple
example architectures in Figure 1. If data have a natural adjacency structure, a convolutional neural
network (CNN) can take advantage of that structure by emphasizing local relationships, especially
when convolutional layers are used in early layers of the neural network. Other neural network
architectures such as autoencoders require no labels and are now regularly used for unsupervised
tasks. In this review, we do not exhaustively discuss the di�erent types of deep neural network
architectures; an overview of the principal terms used herein is given in Table 1. Table 1 also provides
select example applications, though in practice each neural network architecture has been broadly
applied across multiple types of biomedical data. A recent book from Goodfellow et al. covers neural
network architectures in detail [11], and LeCun et al. provide a more general introduction [2].

Table 1:  Glossary.

Term De�nition Example applications

Supervised learning Machine-learning approaches with goal of
prediction of labels or outcomes

Unsupervised
learning

Machine-learning approaches with goal of
data summarization or pattern identi�cation

Neural network (NN)

Machine-learning approach inspired by
biological neurons where inputs are fed into
one or more layers, producing an output
layer

Deep neural network

NN with multiple hidden layers. Training
happens over the network, and consequently
such architectures allow for feature
construction to occur alongside optimization
of the overall training objective.

Feed-forward neural
network (FFNN)

NN that does not have cycles between nodes
in the same layer

Most of the examples below are special cases
of FFNNs, except recurrent neural networks.

Multi-layer
perceptron (MLP)

Type of FFNN with at least one hidden layer
where each deeper layer is a nonlinear
function of each earlier layer

MLPs do not impose structure and are
frequently used when there is no natural
ordering of the inputs (e.g. as with gene
expression measurements).

Convolutional neural
network (CNN)

A NN with layers in which connectivity
preserves local structure. If the data meet the
underlying assumptions performance is often
good, and such networks can require fewer
examples to train e�ectively because they
have fewer parameters and also provide
improved e�ciency.

CNNs are used for sequence data—such as
DNA sequences—or grid data—such as
medical and microscopy images.

Recurrent neural
network (RNN)

A neural network with cycles between nodes
within a hidden layer.

The RNN architecture is used for sequential
data—such as clinical time series and text or
genome sequences.

Long short-term
memory (LSTM)
neural network

This special type of RNN has features that
enable models to capture longer-term
dependencies.

LSTMs are gaining a substantial foothold in
the analysis of natural language, and may
become more widely applied to biological
sequence data.

http://www.asimovinstitute.org/neural-network-zoo/


Term De�nition Example applications

Autoencoder (AE)

A NN where the training objective is to
minimize the error between the output layer
and the input layer. Such neural networks are
unsupervised and are often used for
dimensionality reduction.

Autoencoders have been used for
unsupervised analysis of gene expression
data as well as data extracted from the
electronic health record.

Variational
autoencoder (VAE)

This special type of generative AE learns a
probabilistic latent variable model.

VAEs have been shown to often produce
meaningful reduced representations in the
imaging domain, and some early publications
have used VAEs to analyze gene expression
data.

Denoising
autoencoder (DA)

This special type of AE includes a step where
noise is added to the input during the training
process. The denoising step acts as
smoothing and may allow for e�ective use on
input data that is inherently noisy.

Like AEs, DAs have been used for
unsupervised analysis of gene expression
data as well as data extracted from the
electronic health record.

Generative neural
network

Neural networks that fall into this class can be
used to generate data similar to input data.
These models can be sampled to produce
hypothetical examples.

A number of the unsupervised learning
neural network architectures that are
summarized here can be used in a generative
fashion.

Restricted Boltzmann
machine (RBM)

A generative NN that forms the building block
for many deep learning approaches, having a
single input layer and a single hidden layer,
with no connections between the nodes
within each layer

RBMs have been applied to combine multiple
types of omic data (e.g. DNA methylation,
mRNA expression, and miRNA expression).

Deep belief network
(DBN)

Generative NN with several hidden layers,
which can be obtained from combining
multiple RBMs

DBNs can be used to predict new
relationships in a drug-target interaction
network.

Generative
adversarial network
(GAN)

A generative NN approach where two neural
networks are trained. One neural network,
the generator, is provided with a set of
randomly generated inputs and tasked with
generating samples. The second, the
discriminator, is trained to di�erentiate real
and generated samples. After the two neural
networks are trained against each other, the
resulting generator can be used to produce
new examples.

GANs can synthesize new examples with the
same statistical properties of datasets that
contain individual-level records and are
subject to sharing restrictions. They have also
been applied to generate microscopy images.

Adversarial training

A process by which arti�cial training examples
are maliciously designed to fool a NN and
then input as training examples to make the
resulting NN robust (no relation to GANs)

Adversarial training has been used in image
analysis.

Data augmentation

A process by which transformations that do
not a�ect relevant properties of the input
data (e.g. arbitrary rotations of
histopathology images) are applied to training
examples to increase the size of the training
set.

Data augmentation is widely used in the
analysis of images because rotation
transformations for biomedical images often
do not change relevant properties of the
image.

While deep learning shows increased �exibility over other machine learning approaches, as seen in
the remainder of this review, it requires large training sets in order to �t the hidden layers, as well as
accurate labels for the supervised learning applications. For these reasons, deep learning has recently
become popular in some areas of biology and medicine, while having lower adoption in other areas.
At the same time, this highlights the potentially even larger role that it may play in future research,
given the increases in data in all biomedical �elds. It is also important to see it as a branch of machine



learning and acknowledge that it has the same limitations as other approaches in that �eld. In
particular, the results are still dependent on the underlying study design and the usual caveats of
correlation versus causation still apply—a more precise answer is only better than a less precise one if
it answers the correct question.

Will deep learning transform the study of human disease?

With this review, we ask the question: what is needed for deep learning to transform how we
categorize, study, and treat individuals to maintain or restore health? We choose a high bar for
“transform.” Andrew Grove, the former CEO of Intel, coined the term Strategic In�ection Point to refer
to a change in technologies or environment that requires a business to be fundamentally reshaped
[12]. Here, we seek to identify whether deep learning is an innovation that can induce a Strategic
In�ection Point in the practice of biology or medicine.

There are already a number of reviews focused on applications of deep learning in biology
[13,14,15,16,17], healthcare [18,19,20], and drug discovery [4,21,22,23]. Under our guiding
question, we sought to highlight cases where deep learning enabled researchers to solve challenges
that were previously considered infeasible or makes di�cult, tedious analyses routine. We also
identi�ed approaches that researchers are using to sidestep challenges posed by biomedical data. We
�nd that domain-speci�c considerations have greatly in�uenced how to best harness the power and
�exibility of deep learning. Model interpretability is often critical. Understanding the patterns in data
may be just as important as �tting the data. In addition, there are important and pressing questions
about how to build networks that e�ciently represent the underlying structure and logic of the data.
Domain experts can play important roles in designing networks to represent data appropriately,
encoding the most salient prior knowledge and assessing success or failure. There is also great
potential to create deep learning systems that augment biologists and clinicians by prioritizing
experiments or streamlining tasks that do not require expert judgment. We have divided the large
range of topics into three broad classes: Disease and Patient Categorization, Fundamental Biological
Study, and Treatment of Patients. Below, we brie�y introduce the types of questions, approaches and
data that are typical for each class in the application of deep learning.

Disease and patient categorization

A key challenge in biomedicine is the accurate classi�cation of diseases and disease subtypes. In
oncology, current “gold standard” approaches include histology, which requires interpretation by
experts, or assessment of molecular markers such as cell surface receptors or gene expression. One
example is the PAM50 approach to classifying breast cancer where the expression of 50 marker genes
divides breast cancer patients into four subtypes. Substantial heterogeneity still remains within these
four subtypes [24,25]. Given the increasing wealth of molecular data available, a more
comprehensive subtyping seems possible. Several studies have used deep learning methods to better
categorize breast cancer patients: For instance, denoising autoencoders, an unsupervised approach,
can be used to cluster breast cancer patients [26], and CNNs can help count mitotic divisions, a
feature that is highly correlated with disease outcome in histological images [27]. Despite these recent
advances, a number of challenges exist in this area of research, most notably the integration of
molecular and imaging data with other disparate types of data such as electronic health records
(EHRs).

Fundamental biological study

Deep learning can be applied to answer more fundamental biological questions; it is especially suited
to leveraging large amounts of data from high-throughput “omics” studies. One classic biological
problem where machine learning, and now deep learning, has been extensively applied is molecular



target prediction. For example, deep recurrent neural networks (RNNs) have been used to predict
gene targets of microRNAs [28], and CNNs have been applied to predict protein residue-residue
contacts and secondary structure [29,30,31]. Other recent exciting applications of deep learning
include recognition of functional genomic elements such as enhancers and promoters [32,33,34] and
prediction of the deleterious e�ects of nucleotide polymorphisms [35].

Treatment of patients

Although the application of deep learning to patient treatment is just beginning, we expect new
methods to recommend patient treatments, predict treatment outcomes, and guide the development
of new therapies. One type of e�ort in this area aims to identify drug targets and interactions or
predict drug response. Another uses deep learning on protein structures to predict drug interactions
and drug bioactivity [36]. Drug repositioning using deep learning on transcriptomic data is another
exciting area of research [37]. Restricted Boltzmann machines (RBMs) can be combined into deep
belief networks (DBNs) to predict novel drug-target interactions and formulate drug repositioning
hypotheses [38,39]. Finally, deep learning is also prioritizing chemicals in the early stages of drug
discovery for new targets [23].

Deep learning and patient categorization

In healthcare, individuals are diagnosed with a disease or condition based on symptoms, the results
of certain diagnostic tests, or other factors. Once diagnosed with a disease, an individual might be
assigned a stage based on another set of human-de�ned rules. While these rules are re�ned over
time, the process is evolutionary and ad hoc, potentially impeding the identi�cation of underlying
biological mechanisms and their corresponding treatment interventions.

Deep learning methods applied to a large corpus of patient phenotypes may provide a meaningful
and more data-driven approach to patient categorization. For example, they may identify new shared
mechanisms that would otherwise be obscured due to ad hoc historical de�nitions of disease.
Perhaps deep neural networks, by reevaluating data without the context of our assumptions, can
reveal novel classes of treatable conditions.

In spite of such optimism, the ability of deep learning models to indiscriminately extract predictive
signals must also be assessed and operationalized with care. Imagine a deep neural network is
provided with clinical test results gleaned from electronic health records. Because physicians may
order certain tests based on their suspected diagnosis, a deep neural network may learn to “diagnose”
patients simply based on the tests that are ordered. For some objective functions, such as predicting
an International Classi�cation of Diseases (ICD) code, this may o�er good performance even though it
does not provide insight into the underlying disease beyond physician activity. This challenge is not
unique to deep learning approaches; however, it is important for practitioners to be aware of these
challenges and the possibility in this domain of constructing highly predictive classi�ers of
questionable utility.

Our goal in this section is to assess the extent to which deep learning is already contributing to the
discovery of novel categories. Where it is not, we focus on barriers to achieving these goals. We also
highlight approaches that researchers are taking to address challenges within the �eld, particularly
with regards to data availability and labeling.

Imaging applications in healthcare

Deep learning methods have transformed the analysis of natural images and video, and similar
examples are beginning to emerge with medical images. Deep learning has been used to classify



lesions and nodules; localize organs, regions, landmarks and lesions; segment organs, organ
substructures and lesions; retrieve images based on content; generate and enhance images; and
combine images with clinical reports [19,40].

Though there are many commonalities with the analysis of natural images, there are also key
di�erences. In all cases that we examined, fewer than one million images were available for training,
and datasets are often many orders of magnitude smaller than collections of natural images.
Researchers have developed subtask-speci�c strategies to address this challenge.

Data augmentation provides an e�ective strategy for working with small training sets. The practice is
exempli�ed by a series of papers that analyze images from mammographies [41,42,43,44,45]. To
expand the number and diversity of images, researchers constructed adversarial [44] or augmented
[45] examples. Adversarial training examples are constructed by selecting targeted small
transformations to input data that cause a model to produce very di�erent outputs. Augmented
training applies perturbations to the input data that do not change the underlying meaning, such as
rotations for pathology images. An alternative in the domain is to train towards human-created
features before subsequent �ne-tuning [42], which can help to sidestep this challenge though it does
give up deep learning techniques’ strength as feature constructors.

A second strategy repurposes features extracted from natural images by deep learning models, such
as ImageNet [46], for new purposes. Diagnosing diabetic retinopathy through color fundus images
became an area of focus for deep learning researchers after a large labeled image set was made
publicly available during a 2015 Kaggle competition [47]. Most participants trained neural networks
from scratch [47,48,49], but Gulshan et al. [50] repurposed a 48-layer Inception-v3 deep architecture
pre-trained on natural images and surpassed the state-of-the-art speci�city and sensitivity. Such
features were also repurposed to detect melanoma, the deadliest form of skin cancer, from
dermoscopic [51,52] and non-dermoscopic images of skin lesions [5,53,54] as well as age-related
macular degeneration [55]. Pre-training on natural images can enable very deep networks to succeed
without over�tting. For the melanoma task, reported performance was competitive with or better
than a board of certi�ed dermatologists [5,51]. Reusing features from natural images is also an
emerging approach for radiographic images, where datasets are often too small to train large deep
neural networks without these techniques [56,57,58,59]. A deep CNN trained on natural images
boosts performance in radiographic images [58]. However, the target task required either re-training
the initial model from scratch with special pre-processing or �ne-tuning of the whole network on
radiographs with heavy data augmentation to avoid over�tting.

The technique of reusing features from a di�erent task falls into the broader area of transfer learning
(see Discussion). Though we’ve mentioned numerous successes for the transfer of natural image
features to new tasks, we expect that a lower proportion of negative results have been published. The
analysis of magnetic resonance images (MRIs) is also faced with the challenge of small training sets. In
this domain, Amit et al. [60] investigated the tradeo� between pre-trained models from a di�erent
domain and a small CNN trained only with MRI images. In contrast with the other selected literature,
they found a smaller network trained with data augmentation on a few hundred images from a few
dozen patients can outperform a pre-trained out-of-domain classi�er.

Another way of dealing with limited training data is to divide rich data—e.g. 3D images—into
numerous reduced projections. Shin et al. [57] compared various deep network architectures, dataset
characteristics, and training procedures for computer tomography-based (CT) abnormality detection.
They concluded that networks as deep as 22 layers could be useful for 3D data, despite the limited
size of training datasets. However, they noted that choice of architecture, parameter setting, and
model �ne-tuning needed is very problem- and dataset-speci�c. Moreover, this type of task often
depends on both lesion localization and appearance, which poses challenges for CNN-based
approaches. Straightforward attempts to capture useful information from full-size images in all three



dimensions simultaneously via standard neural network architectures were computationally
unfeasible. Instead, two-dimensional models were used to either process image slices individually (2D)
or aggregate information from a number of 2D projections in the native space (2.5D).

Roth et al. compared 2D, 2.5D, and 3D CNNs on a number of tasks for computer-aided detection from
CT scans and showed that 2.5D CNNs performed comparably well to 3D analogs, while requiring
much less training time, especially on augmented training sets [61]. Another advantage of 2D and
2.5D networks is the wider availability of pre-trained models. However, reducing the dimensionality is
not always helpful. Nie et al. [62] showed that multimodal, multi-channel 3D deep architecture was
successful at learning high-level brain tumor appearance features jointly from MRI, functional MRI,
and di�usion MRI images, outperforming single-modality or 2D models. Overall, the variety of
modalities, properties and sizes of training sets, the dimensionality of input, and the importance of
end goals in medical image analysis are provoking a development of specialized deep neural network
architectures, training and validation protocols, and input representations that are not characteristic
of widely-studied natural images.

Predictions from deep neural networks can be evaluated for use in work�ows that also incorporate
human experts. In a large dataset of mammography images, Kooi et al. [63] demonstrated that deep
neural networks outperform a traditional computer-aided diagnosis system at low sensitivity and
perform comparably at high sensitivity. They also compared network performance to certi�ed
screening radiologists on a patch level and found no signi�cant di�erence between the network and
the readers. However, using deep methods for clinical practice is challenged by the di�culty of
assigning a level of con�dence to each prediction. Leibig et al. [49] estimated the uncertainty of deep
networks for diabetic retinopathy diagnosis by linking dropout networks with approximate Bayesian
inference. Techniques that assign con�dences to each prediction should aid physician-computer
interactions and improve uptake by physicians.

Systems to aid in the analysis of histology slides are also promising use cases for deep learning [64].
Ciresan et al. [27] developed one of the earliest approaches for histology slides, winning the 2012
International Conference on Pattern Recognition’s Contest on Mitosis Detection while achieving
human-competitive accuracy. In more recent work, Wang et al. [65] analyzed stained slides of lymph
node slices to identify cancers. On this task a pathologist has about a 3% error rate. The pathologist
did not produce any false positives, but did have a number of false negatives. The algorithm had
about twice the error rate of a pathologist, but the errors were not strongly correlated. Combining
pre-trained deep network architectures with multiple augmentation techniques enabled accurate
detection of breast cancer from a very small set of histology images with less than 100 images per
class [66]. In this area, these algorithms may be ready to be incorporated into existing tools to aid
pathologists and reduce the false negative rate. Ensembles of deep learning and human experts may
help overcome some of the challenges presented by data limitations.

One source of training examples with rich phenotypical annotations is the EHR. Billing information in
the form of ICD codes are simple annotations but phenotypic algorithms can combine laboratory
tests, medication prescriptions, and patient notes to generate more reliable phenotypes. Recently,
Lee et al. [67] developed an approach to distinguish individuals with age-related macular
degeneration from control individuals. They trained a deep neural network on approximately 100,000
images extracted from structured electronic health records, reaching greater than 93% accuracy. The
authors used their test set to evaluate when to stop training. In other domains, this has resulted in a
minimal change in the estimated accuracy [68], but we recommend the use of an independent test
set whenever feasible.

Rich clinical information is stored in EHRs. However, manually annotating a large set requires experts
and is time consuming. For chest X-ray studies, a radiologist usually spends a few minutes per
example. Generating the number of examples needed for deep learning is infeasibly expensive.



Instead, researchers may bene�t from using text mining to generate annotations [69], even if those
annotations are of modest accuracy. Wang et al. [70] proposed to build predictive deep neural
network models through the use of images with weak labels. Such labels are automatically generated
and not veri�ed by humans, so they may be noisy or incomplete. In this case, they applied a series of
natural language processing (NLP) techniques to the associated chest X-ray radiological reports. They
�rst extracted all diseases mentioned in the reports using a state-of-the-art NLP tool, then applied a
new method, NegBio [71], to �lter negative and equivocal �ndings in the reports. Evaluation on four
independent datasets demonstrated that NegBio is highly accurate for detecting negative and
equivocal �ndings (~90% in F₁ score, which balances precision and recall [72]). The resulting dataset
[73] consisted of 112,120 frontal-view chest X-ray images from 30,805 patients, and each image was
associated with one or more text-mined (weakly-labeled) pathology categories (e.g. pneumonia and
cardiomegaly) or “no �nding” otherwise. Further, Wang et al. [70] used this dataset with a uni�ed
weakly-supervised multi-label image classi�cation framework to detect common thoracic diseases. It
showed superior performance over a benchmark using fully-labeled data.

Another example of semi-automated label generation for hand radiograph segmentation employed
positive mining, an iterative procedure that combines manual labeling with automatic processing [74].
First, the initial training set was created by manually labeling 100 of 12,600 unlabeled radiographs that
were used to train a model and predict labels for the rest of the dataset. Then, poor quality
predictions were discarded through manual inspection, the initial training set was expanded with the
acceptable segmentations, and the process was repeated. This procedure had to be repeated six
times to obtain good quality segmentation labeling for all radiographs, except for 100 corner cases
that still required manual annotation. These annotations allowed accurate segmentation of all hand
images in the test set and boosted the �nal performance in radiograph classi�cation [74].

With the exception of natural image-like problems (e.g. melanoma detection), biomedical imaging
poses a number of challenges for deep learning. Datasets are typically small, annotations can be
sparse, and images are often high-dimensional, multimodal, and multi-channel. Techniques like
transfer learning, heavy dataset augmentation, and the use of multi-view and multi-stream
architectures are more common than in the natural image domain. Furthermore, high model
sensitivity and speci�city can translate directly into clinical value. Thus, prediction evaluation,
uncertainty estimation, and model interpretation methods are also of great importance in this domain
(see Discussion). Finally, there is a need for better pathologist-computer interaction techniques that
will allow combining the power of deep learning methods with human expertise and lead to better-
informed decisions for patient treatment and care.

Text applications in healthcare

Due to the rapid growth of scholarly publications and EHRs, biomedical text mining has become
increasingly important in recent years. The main tasks in biological and clinical text mining include,
but are not limited to, named entity recognition, relation/event extraction, and information retrieval
(Figure 2). Deep learning is appealing in this domain because of its competitive performance versus
traditional methods and ability to overcome challenges in feature engineering. Relevant applications
can be strati�ed by the application domain (biomedical literature vs. clinical notes) and the actual task
(e.g. concept or relation extraction).



Figure 2:  Deep learning applications, tasks, and models based on NLP perspectives.

Named entity recognition (NER) is a task of identifying text spans that refer to a biological concept of a
speci�c class, such as disease or chemical, in a controlled vocabulary or ontology. NER is often needed
as a �rst step in many complex text mining systems. The current state-of-the-art methods typically
reformulate the task as a sequence labeling problem and use conditional random �elds [75,76,77]. In
recent years, word embeddings that contain rich latent semantic information of words have been
widely used to improve the NER performance. Liu et al. studied the e�ect of word embeddings on
drug name recognition and compared them with traditional semantic features [78]. Tang et
al. investigated word embeddings in gene, DNA, and cell line mention detection tasks [79]. Moreover,
Wu et al. examined the use of neural word embeddings for clinical abbreviation disambiguation [80].
Liu et al. exploited task-oriented resources to learn word embeddings for clinical abbreviation
expansion [81].

Relation extraction involves detecting and classifying semantic relationships between entities from the
literature. At present, kernel methods or feature-based approaches are commonly applied [82,83,84].
Deep learning can relieve the feature sparsity and engineering problems. Some studies focused on
jointly extracting biomedical entities and relations simultaneously [85,86], while others applied deep
learning on relation classi�cation given the relevant entities. For example, both multichannel
dependency-based CNNs [87] and shortest path-based CNNs [88,89] are well-suited for sentence-
based protein-protein extraction. Jiang et al. proposed a biomedical domain-speci�c word embedding
model to reduce the manual labor of designing semantic representation for the same task [90]. Gu et
al. employed a maximum entropy model and a CNN model for chemical-induced disease relation
extraction at the inter- and intra-sentence level, respectively [91]. For drug-drug interactions, Zhao et
al. used a CNN that employs word embeddings with the syntactic information of a sentence as well as
features of part-of-speech tags and dependency trees [92]. Asada et al. experimented with an
attention CNN [93], and Yi et al. proposed an RNN model with multiple attention layers [94]. In both
cases, it is a single model with attention mechanism, which allows the decoder to focus on di�erent
parts of the source sentence. As a result, it does not require dependency parsing or training multiple
models. Both attention CNN and RNN have comparable results, but the CNN model has an advantage
in that it can be easily computed in parallel, hence making it faster with recent graphics processing
units (GPUs).

For biotopes event extraction, Li et al. employed CNNs and distributed representation [95] while
Mehryary et al. used long short-term memory (LSTM) networks to extract complicated relations [96].
Li et al. applied word embedding to extract complete events from biomedical text and achieved
results comparable to the state-of-the-art systems [97]. There are also approaches that identify event
triggers rather than the complete event [98,99]. Taken together, deep learning models outperform
traditional kernel methods or feature-based approaches by 1–5% in f-score. Among various deep



learning approaches, CNNs stand out as the most popular model both in terms of computational
complexity and performance, while RNNs have achieved continuous progress.

Information retrieval is a task of �nding relevant text that satis�es an information need from within a
large document collection. While deep learning has not yet achieved the same level of success in this
area as seen in others, the recent surge of interest and work suggest that this may be quickly
changing. For example, Mohan et al. described a deep learning approach to modeling the relevance of
a document’s text to a query, which they applied to the entire biomedical literature [100].

To summarize, deep learning has shown promising results in many biomedical text mining tasks and
applications. However, to realize its full potential in this domain, either large amounts of labeled data
or technical advancements in current methods coping with limited labeled data are required.

Electronic health records

EHR data include substantial amounts of free text, which remains challenging to approach [101].
Often, researchers developing algorithms that perform well on speci�c tasks must design and
implement domain-speci�c features [102]. These features capture unique aspects of the literature
being processed. Deep learning methods are natural feature constructors. In recent work, Chalapathy
et al. evaluated the extent to which deep learning methods could be applied on top of generic
features for domain-speci�c concept extraction [103]. They found that performance was in line with,
but lower than the best domain-speci�c method [103]. This raises the possibility that deep learning
may impact the �eld by reducing the researcher time and cost required to develop speci�c solutions,
but it may not always lead to performance increases.

In recent work, Yoon et al. [104] analyzed simple features using deep neural networks and found that
the patterns recognized by the algorithms could be re-used across tasks. Their aim was to analyze the
free text portions of pathology reports to identify the primary site and laterality of tumors. The only
features the authors supplied to the algorithms were unigrams (counts for single words) and bigrams
(counts for two-word combinations) in a free text document. They subset the full set of words and
word combinations to the 400 most common. The machine learning algorithms that they employed
(naïve Bayes, logistic regression, and deep neural networks) all performed relatively similarly on the
task of identifying the primary site. However, when the authors evaluated the more challenging task,
evaluating the laterality of each tumor, the deep neural network outperformed the other methods. Of
particular interest, when the authors �rst trained a neural network to predict the primary site and
then repurposed those features as a component of a secondary neural network trained to predict
laterality, the performance was higher than a laterality-trained neural network. This demonstrates
how deep learning methods can repurpose features across tasks, improving overall predictions as the
�eld tackles new challenges. The Discussion further reviews this type of transfer learning.

Several authors have created reusable feature sets for medical terminologies using natural language
processing and neural embedding models, as popularized by word2vec [105]. Minarro-Giménez et
al. [106] applied the word2vec deep learning toolkit to medical corpora and evaluated the e�ciency of
word2vec in identifying properties of pharmaceuticals based on mid-sized, unstructured medical text
corpora without any additional background knowledge. A goal of learning terminologies for di�erent
entities in the same vector space is to �nd relationships between di�erent domains (e.g. drugs and
the diseases they treat). It is di�cult for us to provide a strong statement on the broad utility of these
methods. Manuscripts in this area tend to compare algorithms applied to the same data but lack a
comparison against overall best-practices for one or more tasks addressed by these methods.
Techniques have been developed for free text medical notes [107], ICD and National Drug Codes
[108,109], and claims data [110]. Methods for neural embeddings learned from electronic health
records have at least some ability to predict disease-disease associations and implicate genes with a
statistical association with a disease [111], but the evaluations performed did not di�erentiate



between simple predictions (i.e. the same disease in di�erent sites of the body) and non-intuitive
ones. Jagannatha and Yu [112] further employed a bidirectional LSTM structure to extract adverse
drug events from electronic health records, and Lin et al. [113] investigated using CNNs to extract
temporal relations. While promising, a lack of rigorous evaluation of the real-world utility of these
kinds of features makes current contributions in this area di�cult to evaluate. Comparisons need to
be performed to examine the true utility against leading approaches (i.e. algorithms and data) as
opposed to simply evaluating multiple algorithms on the same potentially limited dataset.

Identifying consistent subgroups of individuals and individual health trajectories from clinical tests is
also an active area of research. Approaches inspired by deep learning have been used for both
unsupervised feature construction and supervised prediction. Early work by Lasko et al. [114],
combined sparse autoencoders and Gaussian processes to distinguish gout from leukemia from uric
acid sequences. Later work showed that unsupervised feature construction of many features via
denoising autoencoder neural networks could dramatically reduce the number of labeled examples
required for subsequent supervised analyses [115]. In addition, it pointed towards features learned
during unsupervised training being useful for visualizing and stratifying subgroups of patients within a
single disease. In a concurrent large-scale analysis of EHR data from 700,000 patients, Miotto et
al. [116] used a deep denoising autoencoder architecture applied to the number and co-occurrence of
clinical events to learn a representation of patients (DeepPatient). The model was able to predict
disease trajectories within one year with over 90% accuracy, and patient-level predictions were
improved by up to 15% when compared to other methods. Choi et al. [117] attempted to model the
longitudinal structure of EHRs with an RNN to predict future diagnosis and medication prescriptions
on a cohort of 260,000 patients followed for 8 years (Doctor AI). Pham et al. [118] built upon this
concept by using an RNN with a LSTM architecture enabling explicit modelling of patient trajectories
through the use of memory cells. The method, DeepCare, performed better than shallow models or
plain RNN when tested on two independent cohorts for its ability to predict disease progression,
intervention recommendation and future risk prediction. Nguyen et al. [119] took a di�erent
approach and used word embeddings from EHRs to train a CNN that could detect and pool local
clinical motifs to predict unplanned readmission after six months, with performance better than the
baseline method (Deepr). Razavian et al. [120] used a set of 18 common lab tests to predict disease
onset using both CNN and LSTM architectures and demonstrated an improvement over baseline
regression models. However, numerous challenges including data integration (patient demographics,
family history, laboratory tests, text-based patient records, image analysis, genomic data) and better
handling of streaming temporal data with many features will need to be overcome before we can fully
assess the potential of deep learning for this application area.

Still, recent work has also revealed domains in which deep networks have proven superior to
traditional methods. Survival analysis models the time leading to an event of interest from a shared
starting point, and in the context of EHR data, often associates these events to subject covariates.
Exploring this relationship is di�cult, however, given that EHR data types are often heterogeneous,
covariates are often missing, and conventional approaches require the covariate-event relationship be
linear and aligned to a speci�c starting point [121]. Early approaches, such as the Faraggi-Simon feed-
forward network, aimed to relax the linearity assumption, but performance gains were lacking [122].
Katzman et al. in turn developed a deep implementation of the Faraggi-Simon network that, in
addition to outperforming Cox regression, was capable of comparing the risk between a given pair of
treatments, thus potentially acting as recommender system [123]. To overcome the remaining
di�culties, researchers have turned to deep exponential families, a class of latent generative models
that are constructed from any type of exponential family distributions [124]. The result was a deep
survival analysis model capable of overcoming challenges posed by missing data and heterogeneous
data types, while uncovering nonlinear relationships between covariates and failure time. They
showed their model more accurately strati�ed patients as a function of disease risk score compared
to the current clinical implementation.



There is a computational cost for these methods, however, when compared to traditional, non-neural
network approaches. For the exponential family models, despite their scalability [125], an important
question for the investigator is whether he or she is interested in estimates of posterior uncertainty.
Given that these models are e�ectively Bayesian neural networks, much of their utility simpli�es to
whether a Bayesian approach is warranted for a given increase in computational cost. Moreover, as
with all variational methods, future work must continue to explore just how well the posterior
distributions are approximated, especially as model complexity increases [126].

Challenges and opportunities in patient categorization

Generating ground-truth labels can be expensive or impossible

A dearth of true labels is perhaps among the biggest obstacles for EHR-based analyses that employ
machine learning. Popular deep learning (and other machine learning) methods are often used to
tackle classi�cation tasks and thus require ground-truth labels for training. For EHRs this can mean
that researchers must hire multiple clinicians to manually read and annotate individual patients’
records through a process called chart review. This allows researchers to assign “true” labels,
i.e. those that match our best available knowledge. Depending on the application, sometimes the
features constructed by algorithms also need to be manually validated and interpreted by clinicians.
This can be time consuming and expensive [127]. Because of these costs, much of this research,
including the work cited in this review, skips the process of expert review. Clinicians’ skepticism for
research without expert review may greatly dampen their enthusiasm for the work and consequently
reduce its impact. To date, even well-resourced large national consortia have been challenged by the
task of acquiring enough expert-validated labeled data. For instance, in the eMERGE consortia and
PheKB database [128], most samples with expert validation contain only 100 to 300 patients. These
datasets are quite small even for simple machine learning algorithms. The challenge is greater for
deep learning models with many parameters. While unsupervised and semi-supervised approaches
can help with small sample sizes, the �eld would bene�t greatly from large collections of anonymized
records in which a substantial number of records have undergone expert review. This challenge is not
unique to EHR-based studies. Work on medical images, omics data in applications for which detailed
metadata are required, and other applications for which labels are costly to obtain will be hampered
as long as abundant curated data are unavailable.

Successful approaches to date in this domain have sidestepped this challenge by making
methodological choices that either reduce the need for labeled examples or that use transformations
to training data to increase the number of times it can be used before over�tting occurs. For example,
the unsupervised and semi-supervised methods that we have discussed reduce the need for labeled
examples [115]. The anchor and learn framework [129] uses expert knowledge to identify high-
con�dence observations from which labels can be inferred. If transformations are available that
preserve the meaningful content of the data, the adversarial and augmented training techniques
discussed above can reduce over�tting. While these can be easily imagined for certain methods that
operate on images, it is more challenging to �gure out equivalent transformations for a patient’s
clinical test results. Consequently, it may be hard to employ such training examples with other
applications. Finally, approaches that transfer features can also help use valuable training data most
e�ciently. Rajkomar et al. trained a deep neural network using generic images before tuning using
only radiology images [58]. Datasets that require many of the same types of features might be used
for initial training, before �ne tuning takes place with the more sparse biomedical examples. Though
the analysis has not yet been attempted, it is possible that analogous strategies may be possible with
electronic health records. For example, features learned from the electronic health record for one
type of clinical test (e.g. a decrease over time in a lab value) may transfer across phenotypes. Methods
to accomplish more with little high-quality labeled data arose in other domains and may also be
adapted to this challenge, e.g. data programming [130]. In data programming, noisy automated
labeling functions are integrated.



Numerous commentators have described data as the new oil [131,132]. The idea behind this
metaphor is that data are available in large quantities, valuable once re�ned, and this underlying
resource will enable a data-driven revolution in how work is done. Contrasting with this perspective,
Ratner, Bach, and Ré described labeled training data, instead of data, as “The New New Oil” [133]. In
this framing, data are abundant and not a scarce resource. Instead, new approaches to solving
problems arise when labeled training data become su�cient to enable them. Based on our review of
research on deep learning methods to categorize disease, the latter framing rings true.

We expect improved methods for domains with limited data to play an important role if deep learning
is going to transform how we categorize states of human health. We don’t expect that deep learning
methods will replace expert review. We expect them to complement expert review by allowing more
e�cient use of the costly practice of manual annotation.

Data sharing is hampered by standardization and privacy considerations

To construct the types of very large datasets that deep learning methods thrive on, we need robust
sharing of large collections of data. This is in part a cultural challenge. We touch on this challenge in
the Discussion section. Beyond the cultural hurdles around data sharing, there are also technological
and legal hurdles related to sharing individual health records or deep models built from such records.
This subsection deals primarily with these challenges.

EHRs are designed chie�y for clinical, administrative and �nancial purposes, such as patient care,
insurance, and billing [134]. Science is at best a tertiary priority, presenting challenges to EHR-based
research in general and to deep learning research in particular. Although there is signi�cant work in
the literature around EHR data quality and the impact on research [135], we focus on three types of
challenges: local bias, wider standards, and legal issues. Note these problems are not restricted to
EHRs but can also apply to any large biomedical dataset, e.g. clinical trial data.

Even within the same healthcare system, EHRs can be used di�erently [136,137]. Individual users
have unique documentation and ordering patterns, with di�erent departments and di�erent
hospitals having di�erent priorities that code patients and introduce missing data in a non-random
fashion [138]. Patient data may be kept across several “silos” within a single health system
(e.g. separate nursing documentation, registries, etc.). Even the most basic task of matching patients
across systems can be challenging due to data entry issues [139]. The situation is further exacerbated
by the ongoing introduction, evolution, and migration of EHR systems, especially where reorganized
and acquired healthcare facilities have to merge. Further, even the ostensibly least-biased data type,
laboratory measurements, can be biased based by both the healthcare process and patient health
state [140]. As a result, EHR data can be less complete and less objective than expected.

In the wider picture, standards for EHRs are numerous and evolving. Proprietary systems, indi�erent
and scattered use of health information standards, and controlled terminologies makes combining
and comparison of data across systems challenging [141]. Further diversity arises from variation in
languages, healthcare practices, and demographics. Merging EHRs gathered in di�erent systems (and
even under di�erent assumptions) is challenging [142].

Combining or replicating studies across systems thus requires controlling for both the above biases
and dealing with mismatching standards. This has the practical e�ect of reducing cohort size, limiting
statistical signi�cance, preventing the detection of weak e�ects [143], and restricting the number of
parameters that can be trained in a model. Further, rule-based algorithms have been popular in EHR-
based research, but because these are developed at a single institution and trained with a speci�c
patient population, they do not transfer easily to other healthcare systems [144]. Genetic studies
using EHR data are subject to even more bias, as the di�erences in population ancestry across health
centers (e.g. proportion of patients with African or Asian ancestry) can a�ect algorithm performance.



For example, Wiley et al. [145] showed that warfarin dosing algorithms often under-perform in African
Americans, illustrating that some of these issues are unresolved even at a treatment best practices
level. Lack of standardization also makes it challenging for investigators skilled in deep learning to
enter the �eld, as numerous data processing steps must be performed before algorithms are applied.

Finally, even if data were perfectly consistent and compatible across systems, attempts to share and
combine EHR data face considerable legal and ethical barriers. Patient privacy can severely restrict the
sharing and use of EHR data [146]. Here again, standards are heterogeneous and evolving, but often
EHR data cannot be exported or even accessed directly for research purposes without appropriate
consent. In the United States, research use of EHR data is subject both to the Common Rule and the
Health Insurance Portability and Accountability Act (HIPAA). Ambiguity in the regulatory language and
individual interpretation of these rules can hamper use of EHR data [147]. Once again, this has the
e�ect of making data gathering more laborious and expensive, reducing sample size and study power.

Several technological solutions have been proposed in this direction, allowing access to sensitive data
satisfying privacy and legal concerns. Software like DataShield [148] and ViPAR [149], although not
EHR-speci�c, allow querying and combining of datasets and calculation of summary statistics across
remote sites by “taking the analysis to the data”. The computation is carried out at the remote site.
Conversely, the EH4CR project [141] allows analysis of private data by use of an inter-mediation layer
that interprets remote queries across internal formats and datastores and returns the results in a de-
identi�ed standard form, thus giving real-time consistent but secure access. Continuous Analysis
[150] can allow reproducible computing on private data. Using such techniques, intermediate results
can be automatically tracked and shared without sharing the original data. While none of these have
been used in deep learning, the potential is there.

Even without sharing data, algorithms trained on con�dential patient data may present security risks
or accidentally allow for the exposure of individual level patient data. Tramer et al. [151] showed the
ability to steal trained models via public application programming interfaces (APIs). Dwork and Roth
[152] demonstrate the ability to expose individual level information from accurate answers in a
machine learning model. Attackers can use similar attacks to �nd out if a particular data instance was
present in the original training set for the machine learning model [153], in this case, whether a
person’s record was present. To protect against these attacks, Simmons et al. [154] developed the
ability to perform genome-wide association studies (GWASs) in a di�erentially private manner, and
Abadi et al. [155] show the ability to train deep learning classi�ers under the di�erential privacy
framework.

These attacks also present a potential hazard for approaches that aim to generate data. Choi et
al. propose generative adversarial neural networks (GANs) as a tool to make sharable EHR data [156],
and Esteban et al. [157] showed that recurrent GANs could be used for time series data. However, in
both cases the authors did not take steps to protect the model from such attacks. There are
approaches to protect models, but they pose their own challenges. Training in a di�erentially private
manner provides a limited guarantee that an algorithm’s output will be equally likely to occur
regardless of the participation of any one individual. The limit is determined by parameters which
provide a quanti�cation of privacy. Beaulieu-Jones et al. demonstrated the ability to generate data
that preserved properties of the SPRINT clinical trial with GANs under the di�erential privacy
framework [158]. Both Beaulieu-Jones et al. and Esteban et al. train models on synthetic data
generated under di�erential privacy and observe performance from a transfer learning evaluation
that is only slightly below models trained on the original, real data. Taken together, these results
suggest that di�erentially private GANs may be an attractive way to generate sharable datasets for
downstream reanalysis.

Federated learning [159] and secure aggregations [160,161] are complementary approaches that
reinforce di�erential privacy. Both aim to maintain privacy by training deep learning models from



decentralized data sources such as personal mobile devices without transferring actual training
instances. This is becoming of increasing importance with the rapid growth of mobile health
applications. However, the training process in these approaches places constraints on the algorithms
used and can make �tting a model substantially more challenging. It can be trivial to train a model
without di�erential privacy, but quite di�cult to train one within the di�erential privacy framework
[158]. This problem can be particularly pronounced with small sample sizes.

While none of these problems are insurmountable or restricted to deep learning, they present
challenges that cannot be ignored. Technical evolution in EHRs and data standards will doubtless ease
—although not solve—the problems of data sharing and merging. More problematic are the privacy
issues. Those applying deep learning to the domain should consider the potential of inadvertently
disclosing the participants’ identities. Techniques that enable training on data without sharing the raw
data may have a part to play. Training within a di�erential privacy framework may often be warranted.

Discrimination and “right to an explanation” laws

In April 2016, the European Union adopted new rules regarding the use of personal information, the
General Data Protection Regulation [162]. A component of these rules can be summed up by the
phrase “right to an explanation”. Those who use machine learning algorithms must be able to explain
how a decision was reached. For example, a clinician treating a patient who is aided by a machine
learning algorithm may be expected to explain decisions that use the patient’s data. The new rules
were designed to target categorization or recommendation systems, which inherently pro�le
individuals. Such systems can do so in ways that are discriminatory and unlawful.

As datasets become larger and more complex, we may begin to identify relationships in data that are
important for human health but di�cult to understand. The algorithms described in this review and
others like them may become highly accurate and useful for various purposes, including within
medical practice. However, to discover and avoid discriminatory applications it will be important to
consider interpretability alongside accuracy. A number of properties of genomic and healthcare data
will make this di�cult.

First, research samples are frequently non-representative of the general population of interest; they
tend to be disproportionately sick [163], male [164], and European in ancestry [165]. One well-known
consequence of these biases in genomics is that penetrance is consistently lower in the general
population than would be implied by case-control data, as reviewed in [163]. Moreover, real genetic
associations found in one population may not hold in other populations with di�erent patterns of
linkage disequilibrium (even when population strati�cation is explicitly controlled for [166]). As a
result, many genomic �ndings are of limited value for people of non-European ancestry [165] and
may even lead to worse treatment outcomes for them. Methods have been developed for mitigating
some of these problems in genomic studies [163,166], but it is not clear how easily they can be
adapted for deep models that are designed speci�cally to extract subtle e�ects from high-dimensional
data. For example, di�erences in the equipment that tended to be used for cases versus controls have
led to spurious genetic �ndings (e.g. Sebastiani et al.’s retraction [167]). In some contexts, it may not
be possible to correct for all of these di�erences to the degree that a deep network is unable to use
them. Moreover, the complexity of deep networks makes it di�cult to determine when their
predictions are likely to be based on such nominally-irrelevant features of the data (called “leakage” in
other �elds [168]). When we are not careful with our data and models, we may inadvertently say more
about the way the data was collected (which may involve a history of unequal access and
discrimination) than about anything of scienti�c or predictive value. This fact can undermine the
privacy of patient data [168] or lead to severe discriminatory consequences [169].

There is a small but growing literature on the prevention and mitigation of data leakage [168], as well
as a closely-related literature on discriminatory model behavior [170], but it remains di�cult to



predict when these problems will arise, how to diagnose them, and how to resolve them in practice.
There is even disagreement about which kinds of algorithmic outcomes should be considered
discriminatory [171]. Despite the di�culties and uncertainties, machine learning practitioners (and
particularly those who use deep neural networks, which are challenging to interpret) must remain
cognizant of these dangers and make every e�ort to prevent harm from discriminatory predictions.
To reach their potential in this domain, deep learning methods will need to be interpretable (see
Discussion). Researchers need to consider the extent to which biases may be learned by the model
and whether or not a model is su�ciently interpretable to identify bias. We discuss the challenge of
model interpretability more thoroughly in Discussion.

Applications of deep learning to longitudinal analysis

Longitudinal analysis follows a population across time, for example, prospectively from birth or from
the onset of particular conditions. In large patient populations, longitudinal analyses such as the
Framingham Heart Study [172] and the Avon Longitudinal Study of Parents and Children [173] have
yielded important discoveries about the development of disease and the factors contributing to
health status. Yet, a common practice in EHR-based research is to take a snapshot at a point in time
and convert patient data to a traditional vector for machine learning and statistical analysis. This
results in loss of information as timing and order of events can provide insight into a patient’s disease
and treatment [174]. E�orts to model sequences of events have shown promise [175] but require
exceedingly large patient sizes due to discrete combinatorial bucketing. Lasko et al. [114] used
autoencoders on longitudinal sequences of serum uric acid measurements to identify population
subtypes. More recently, deep learning has shown promise working with both sequences (CNNs)
[176] and the incorporation of past and current state (RNNs, LSTMs) [118]. This may be a particular
area of opportunity for deep neural networks. The ability to recognize relevant sequences of events
from a large number of trajectories requires powerful and �exible feature construction methods—an
area in which deep neural networks excel.

Deep learning to study the fundamental biological processes
underlying human disease

The study of cellular structure and core biological processes—transcription, translation, signaling,
metabolism, etc.—in humans and model organisms will greatly impact our understanding of human
disease over the long horizon [177]. Predicting how cellular systems respond to environmental
perturbations and are altered by genetic variation remain daunting tasks. Deep learning o�ers new
approaches for modeling biological processes and integrating multiple types of omic data [178],
which could eventually help predict how these processes are disrupted in disease. Recent work has
already advanced our ability to identify and interpret genetic variants, study microbial communities,
and predict protein structures, which also relates to the problems discussed in the drug development
section. In addition, unsupervised deep learning has enormous potential for discovering novel cellular
states from gene expression, �uorescence microscopy, and other types of data that may ultimately
prove to be clinically relevant.

Progress has been rapid in genomics and imaging, �elds where important tasks are readily adapted to
well-established deep learning paradigms. One-dimensional convolutional and recurrent neural
networks are well-suited for tasks related to DNA- and RNA-binding proteins, epigenomics, and RNA
splicing. Two dimensional CNNs are ideal for segmentation, feature extraction, and classi�cation in
�uorescence microscopy images [17]. Other areas, such as cellular signaling, are biologically
important but studied less-frequently to date, with some exceptions [179]. This may be a
consequence of data limitations or greater challenges in adapting neural network architectures to the
available data. Here, we highlight several areas of investigation and assess how deep learning might
move these �elds forward.



Gene expression

Gene expression technologies characterize the abundance of many thousands of RNA transcripts
within a given organism, tissue, or cell. This characterization can represent the underlying state of the
given system and can be used to study heterogeneity across samples as well as how the system reacts
to perturbation. While gene expression measurements were traditionally made by quantitative
polymerase chain reaction (qPCR), low-throughput �uorescence-based methods, and microarray
technologies, the �eld has shifted in recent years to primarily performing RNA sequencing (RNA-seq)
to catalog whole transcriptomes. As RNA-seq continues to fall in price and rise in throughput, sample
sizes will increase and training deep models to study gene expression will become even more useful.

Already several deep learning approaches have been applied to gene expression data with varying
aims. For instance, many researchers have applied unsupervised deep learning models to extract
meaningful representations of gene modules or sample clusters. Denoising autoencoders have been
used to cluster yeast expression microarrays into known modules representing cell cycle processes
[180] and to stratify yeast strains based on chemical and mutational perturbations [181]. Shallow
(one hidden layer) denoising autoencoders have also been fruitful in extracting biological insight from
thousands of Pseudomonas aeruginosa experiments [182,183] and in aggregating features relevant
to speci�c breast cancer subtypes [26]. These unsupervised approaches applied to gene expression
data are powerful methods for identifying gene signatures that may otherwise be overlooked. An
additional bene�t of unsupervised approaches is that ground truth labels, which are often di�cult to
acquire or are incorrect, are nonessential. However, the genes that have been aggregated into
features must be interpreted carefully. Attributing each node to a single speci�c biological function
risks over-interpreting models. Batch e�ects could cause models to discover non-biological features,
and downstream analyses should take this into consideration.

Deep learning approaches are also being applied to gene expression prediction tasks. For example, a
deep neural network with three hidden layers outperformed linear regression in inferring the
expression of over 20,000 target genes based on a representative, well-connected set of about 1,000
landmark genes [184]. However, while the deep learning model outperformed existing algorithms in
nearly every scenario, the model still displayed poor performance. The paper was also limited by
computational bottlenecks that required data to be split randomly into two distinct models and
trained separately. It is unclear how much performance would have increased if not for computational
restrictions.

Epigenomic data, combined with deep learning, may have su�cient explanatory power to infer gene
expression. For instance, the DeepChrome CNN [185] improved prediction accuracy of high or low
gene expression from histone modi�cations over existing methods. AttentiveChrome [186] added a
deep attention model to further enhance DeepChrome. Deep learning can also integrate di�erent
data types. For example, Liang et al. combined RBMs to integrate gene expression, DNA methylation,
and miRNA data to de�ne ovarian cancer subtypes [187]. While these approaches are promising,
many convert gene expression measurements to categorical or binary variables, thus ablating many
complex gene expression signatures present in intermediate and relative numbers.

Deep learning applied to gene expression data is still in its infancy, but the future is bright. Many
previously untestable hypotheses can now be interrogated as deep learning enables analysis of
increasing amounts of data generated by new technologies. For example, the e�ects of cellular
heterogeneity on basic biology and disease etiology can now be explored by single-cell RNA-seq and
high-throughput �uorescence-based imaging, techniques we discuss below that will bene�t
immensely from deep learning approaches.

DNA methylation



DNA methylation is the process of adding a methyl group to a cytosine in the context of a CpG
dinucleotide. This DNA-level epigenetic modi�cation regulates gene transcription and is critical in
development. Alterations to DNA methylation are well-established as contributing to pathophysiology
of many diseases including cancers [188,189]. Studies of DNA methylation have demonstrated its
fundamental role in cell lineage speci�cation starting with stem cell di�erentiation [190,191] as well
as a strong relationship with aging phenotypes [192,193] and pathogenesis in response to
environmental exposures [194,195].

Traditional analytic approaches to DNA methylation data often focus on estimating di�erential DNA
methylation between groups or related with an outcome using linear mixed e�ects models, so-called
epigenome-wide association studies [196,197,198,199]. In addition, a growing application of DNA
methylation measures is to infer cellular or subject phenotypes from samples and either examine the
relation of these phenotypes with outcomes or disease states directly or include them in models as
covariates [200,201,202,203,204]. For example, inference of subject age using DNA methylation clock
approaches are established [205] and are starting to be applied to test the relation of biological age
with disease risk and outcomes [206]. Di�erent cell types have di�erent DNA methylation pro�les. A
novel approach to immunophenotyping combines measurements with reference DNA methylation
pro�les of leukocytes to infer immune cell type proportions [207,208]. This strategy is particularly
helpful when only DNA is available from a sample. Cell type inference is important for adjusting for
cell-type composition in epigenome-wide association studies [199]. While reference-based libraries
have strong predictive value for immune cell type estimation and have broad utility, methods to
incorporate estimates of mixtures pose important considerations on the interpretation of underlying
biology associated with disease manifestations and phenotypes. When a reference library is not
available, reference-free deconvolution methods [209] that do not rely on these reference libraries
are available to decompose signal purported to be contributed by cell types. However, using
reference-free cell type proportion estimates as potential confounders in adjusted models can be
overly conservative. Outcome-associated variation in DNA methylation may be decomposed into
putative cell type estimates. Additional validated reference-based libraries for other tissue types,
advancements in reference-free deconvolution methods, and application of deep learning methods
are expected to provide new opportunities to understand and interpret DNA methylation in human
health and disease.

Deep learning approaches have numerous potential applications for DNA methylation data.
Imputation methods that capture complex interactions between di�erent regions of DNA can expand
the number of CpG sites whose DNA methylation state can be studied. Ideally these methods can
derive their own informative, biologically-relevant features. The primary deep learning methods
developed to date focus on: 1) estimating regions of methylation status and imputing missing
methylation values, 2) performing classi�cation and regression tasks, and 3) using the latent
embeddings of methylation states to derive biologically meaningful features, infer interpolated
disease states, and uncover CpG sites that aid the above prediction tasks.

Inference, imputation, and prediction

Deep learning approaches are beginning to help address some of the current limitations of feature-
by-feature analysis approaches to DNA methylation data and may help uncover additional important
features necessary to understand the biological underpinnings behind di�erent pathological states.
One of the more popular applications is imputing the degree of methylation at CpG sites that are
within a few thousand base pairs of measured sites or present in similar samples. DeepSignal
employs a CNN to construct features from raw electrical Nanopore signals from sites near a
methylated base. It uses a bidirectional RNN on DNA sequences of the aligned signals to detect
methylation [210]. DeepCpG applies a similar method using scBS-Seq, DNA sequence, and a
bidirectional gated recurrent network [211]. Methods like MRCNN and DeepMethyl incorporate both
sequence and topological structure [212,213,214,215]. In addition, gene expression has been used to



infer and impute methylation states [216,217], methylation of genes can be predicted from promoter
methylation [218], and convolutional models have been able to predict methylation status from
images [219,220]. While these examples of methylation imputation and inference methods have
value, it is imperative to recognize limitations of imputing cytosine modi�cations. Imputing DNA
methylation has complexities above and beyond genotype imputation. Correlation of DNA
methylation marks can depend on cell types and other factors that vary by sample. As the number of
tissue types and cell types with whole-genome bisul�te sequencing and oxidative bisul�te sequencing
grows, the accuracy of DNA methylation imputation is expected to increase. While these methods,
such as the autoencoder-based DAPL [221], reduce the computational overhead at comparable
performance to other popular methylation imputation methods such as k-nearest neighbors, random
forests, singular value decomposition, and multiple imputation by chained equations, the software
implementations will need to become more user-friendly to gain widespread adoption.

Once DNA methylation is measured, deep learning approaches can also be used to perform
classi�cation and regression tasks. For instance, deep neural networks have been employed on DNA
methylation data to predict triglyceride concentrations pre- and post-treatment [222,223] and
di�erentiate cancer subtypes [224,225] better than other methods such as support vector machines
(SVMs). Modular approaches to methylation prediction, such as MethylNet, have been able to predict
age, cellular proportions, and cancer subtypes, outperforming SVM and elastic net models while
remaining concordant with expected biology [226]. These approaches aim to make embedding,
hyperparameter selection, regression, classi�cation, and model interpretation tasks more tractable
for epigenetics researchers and machine learning scientists.

Latent space construction

Unsupervised discovery of biologically-signi�cant features is another major area of interest for
researchers using DNA methylation data. A consistent theme of these methods is that they construct
a low-dimensional space that semantically encodes biologically important features from methylation
pro�les. As with other applications, these low-dimensional representations are thought to capture a
set of important, unmeasured sources of biological variability in the data. Projection into these spaces
results in biologically-similar examples being close together. For this reason, they are often termed
latent spaces. One method used several stacked binary RBMs to learn a low-dimensional subspace
representation of the methylation pro�les of 5,000 CpG sites with the highest variance across 136
breast tissue samples, 113 breast cancer samples, and 23 non-cancerous samples. Samples in the
latent space were clustered via self-organizing maps to show that the latent space could di�erentiate
breast cancer samples from non-neoplastic samples. Furthermore, the latent space was visualized
using t-Distributed Stochastic Neighbor Embedding (t-SNE) [227,228]. Titus et al. [229] adapted a VAE
strategy developed by Way et al. [230] to methylation data. The VAE was modi�ed to perform
dimensionality reduction on 300,000 PAM50-assigned CpG features to 100 latent features in 862
samples. The authors performed t-SNE visualization, clustering, and tumor subtype classi�cation from
a TCGA breast cancer dataset. In an subsequent extension [231], the authors constructed a 100-
dimensional latent space of 100,000 CpG sites across approximately 1,200 samples. They selected
latent space dimensions that were the most highly associated with the di�erentiation between
estrogen receptor (ER) positive and negative tumor samples in breast cancer patients to determine
the extent to which the latent space could predict responses to endocrine therapy. Certain latent
space dimensions di�erentiated tumors based on their ER status and provided biologically-plausible
hypotheses, which suggests that VAE-derived models may have a place in summarizing DNA
methylation pro�les into composite features that can aid in predicting treatment response. Another
study explored the latent features of lung cancer methylation pro�les that were extracted using VAEs.
After constructing a latent space representations of TCGA lung cancer samples, the authors used a
logistic regression classi�er on the latent dimensions to accurately classify cancer subtypes [232].
These studies, along with the growing body of work using VAEs and other latent representations of
genomic and epigenomic data demonstrate a suite of tools to explore the unmeasured aspects of



biology. Techniques that produce these representations provide the opportunity to discover
important biological features that were previously missed. The power of unsupervised deep learning
models for this task comes from their ability to learn high-dimensional non-linear relationships among
data.

Important applications in the future include predicting methylation and pathological states based on
methylation pro�les uncovered from datasets with more noise, such as solid tissue samples.
Unsupervised deep learning approaches such as VAEs may provide a more complete understanding
of the biological processes underlying cell types, transitions in cell dynamics, and subject phenotypes.
In addition, latent representations may assist with biological hypothesis generation and have the
ability to stratify patients by predicted risk. While neural network embeddings can outperform
traditional embeddings, it is important to be aware that many of these methods can be highly
sensitive to hyperparameter tuning and an evaluation of the impact of hyperparameter tuning should
be included [233].

Splicing

Pre-mRNA transcripts can be spliced into di�erent isoforms by retaining or skipping subsets of exons
or including parts of introns, creating enormous spatiotemporal �exibility to generate multiple distinct
proteins from a single gene. This remarkable complexity can lend itself to defects that underlie many
diseases. For instance, splicing mutations in the lamin A (LMNA) gene can lead to speci�c variants of
dilated cardiomyopathy and limb girdle muscular dystrophy [234]. A recent study found that
quantitative trait loci that a�ect splicing in lymphoblastoid cell lines are enriched within risk loci for
schizophrenia, multiple sclerosis, and other immune diseases, implicating mis-splicing as a more
widespread feature of human pathologies than previously thought [235]. Therapeutic strategies that
aim to modulate splicing are also currently being considered for disorders such as Duchenne
muscular dystrophy and spinal muscular atrophy [234].

Sequencing studies routinely return thousands of unannotated variants, but which cause functional
changes in splicing and how are those changes manifested? Prediction of a “splicing code” has been a
goal of the �eld for the past decade. Initial machine learning approaches used a naïve Bayes model
and a 2-layer Bayesian neural network with thousands of hand-derived sequence-based features to
predict the probability of exon skipping [236,237]. With the advent of deep learning, more complex
models provided better predictive accuracy [238,239]. Importantly, these new approaches can take in
multiple kinds of epigenomic measurements as well as tissue identity and RNA binding partners of
splicing factors. Deep learning is critical in furthering these kinds of integrative studies where di�erent
data types and inputs interact in unpredictable (often nonlinear) ways to create higher-order features.
Moreover, as in gene expression network analysis, interrogating the hidden nodes within neural
networks could potentially illuminate important aspects of splicing behavior. For instance, tissue-
speci�c splicing mechanisms could be inferred by training networks on splicing data from di�erent
tissues, then searching for common versus distinctive hidden nodes, a technique employed by Qin et
al. for tissue-speci�c transcription factor (TF) binding predictions [240].

A parallel e�ort has been to use more data with simpler models. An exhaustive study using readouts
of splicing for millions of synthetic intronic sequences uncovered motifs that in�uence the strength of
alternative splice sites [241]. The authors built a simple linear model using hexamer motif frequencies
that successfully generalized to exon skipping. In a limited analysis using single nucleotide
polymorphisms (SNPs) from three genes, it predicted exon skipping with three times the accuracy of
an existing deep learning-based framework [238]. This case is instructive in that clever sources of
data, not just more descriptive models, are still critical.

We already understand how mis-splicing of a single gene can cause diseases such as limb girdle
muscular dystrophy. The challenge now is to uncover how genome-wide alternative splicing underlies



complex, non-Mendelian diseases such as autism, schizophrenia, Type 1 diabetes, and multiple
sclerosis [242]. As a proof of concept, Xiong et al. [238] sequenced �ve autism spectrum disorder and
12 control samples, each with an average of 42,000 rare variants, and identi�ed mis-splicing in 19
genes with neural functions. Such methods may one day enable scientists and clinicians to rapidly
pro�le thousands of unannotated variants for functional e�ects on splicing and nominate candidates
for further investigation. Moreover, these nonlinear algorithms can deconvolve the e�ects of multiple
variants on a single splice event without the need to perform combinatorial in vitro experiments. The
ultimate goal is to predict an individual’s tissue-speci�c, exon-speci�c splicing patterns from their
genome sequence and other measurements to enable a new branch of precision diagnostics that also
strati�es patients and suggests targeted therapies to correct splicing defects. However, to achieve this
we expect that methods to interpret the “black box” of deep neural networks and integrate diverse
data sources will be required.

Transcription factors

Transcription factors are proteins that bind regulatory DNA in a sequence-speci�c manner to
modulate the activation and repression of gene transcription. High-throughput in vitro experimental
assays that quantitatively measure the binding speci�city of a TF to a large library of short
oligonucleotides [243] provide rich datasets to model the naked DNA sequence a�nity of individual
TFs in isolation. However, in vivo TF binding is a�ected by a variety of other factors beyond sequence
a�nity, such as competition and cooperation with other TFs, TF concentration, and chromatin state
(chemical modi�cations to DNA and other packaging proteins that DNA is wrapped around) [243]. TFs
can thus exhibit highly variable binding landscapes across the same genomic DNA sequence across
diverse cell types and states. Several experimental approaches such as chromatin
immunoprecipitation followed by sequencing (ChIP-seq) have been developed to pro�le in vivo
binding maps of TFs [243]. Large reference compendia of ChIP-seq data are now freely available for a
large collection of TFs in a small number of reference cell states in humans and a few other model
organisms [244]. Due to fundamental material and cost constraints, it is infeasible to perform these
experiments for all TFs in every possible cellular state and species. Hence, predictive computational
models of TF binding are essential to understand gene regulation in diverse cellular contexts.

Several machine learning approaches have been developed to learn generative and discriminative
models of TF binding from in vitro and in vivo TF binding datasets that associate collections of
synthetic DNA sequences or genomic DNA sequences to binary labels (bound/unbound) or
continuous measures of binding. The most common class of TF binding models in the literature are
those that only model the DNA sequence a�nity of TFs from in vitro and in vivo binding data. The
earliest models were based on deriving simple, compact, interpretable sequence motif
representations such as position weight matrices (PWMs) and other biophysically inspired models
[245,246,247]. These models were outperformed by general k-mer based models including SVMs with
string kernels [248,249].

In 2015, Alipanahi et al. developed DeepBind, the �rst CNN to classify bound DNA sequences based
on in vitro and in vivo assays against random DNA sequences matched for dinucleotide sequence
composition [250]. The convolutional layers learn pattern detectors reminiscent of PWMs from a one-
hot encoding of the raw input DNA sequences. DeepBind outperformed several state-of-the-art
methods from the DREAM5 in vitro TF-DNA motif recognition challenge [247]. Although DeepBind was
also applied to RNA-binding proteins, in general RNA binding is a separate problem [251] and
accurate models will need to account for RNA secondary structure. Following DeepBind, several
optimized convolutional and recurrent neural network architectures as well as novel hybrid
approaches that combine kernel methods with neural networks have been proposed that further
improve performance [252,253,254,255]. Specialized layers and regularizers have also been
proposed to reduce parameters and learn more robust models by taking advantage of speci�c
properties of DNA sequences such as their reverse complement equivalence [256,257].



While most of these methods learn independent models for di�erent TFs, in vivo multiple TFs
compete or cooperate to occupy DNA binding sites, resulting in complex combinatorial co-binding
landscapes. To take advantage of this shared structure in in vivo TF binding data, multi-task neural
network architectures have been developed that explicitly share parameters across models for
multiple TFs [255,258,259]. Some of these multi-task models train and evaluate classi�cation
performance relative to an unbound background set of regulatory DNA sequences sampled from the
genome rather than using synthetic background sequences with matched dinucleotide composition.

The above-mentioned TF binding prediction models that use only DNA sequences as inputs have a
fundamental limitation. Because the DNA sequence of a genome is the same across di�erent cell
types and states, a sequence-only model of TF binding cannot predict di�erent in vivo TF binding
landscapes in new cell types not used during training. One approach for generalizing TF binding
predictions to new cell types is to learn models that integrate DNA sequence inputs with other cell-
type-speci�c data modalities that modulate in vivo TF binding such as surrogate measures of TF
concentration (e.g. TF gene expression) and chromatin state. Arvey et al. showed that combining the
predictions of SVMs trained on DNA sequence inputs and cell-type speci�c DNase-seq data, which
measures genome-wide chromatin accessibility, improved in vivo TF binding prediction within and
across cell types [260]. Several “footprinting” based methods have also been developed that learn to
discriminate bound from unbound instances of known canonical motifs of a target TF based on high-
resolution footprint patterns of chromatin accessibility that are speci�c to the target TF [261].
However, the genome-wide predictive performance of these methods in new cell types and states has
not been evaluated.

Recently, a community challenge known as the “ENCODE-DREAM in vivo TF Binding Site Prediction
Challenge” was introduced to systematically evaluate genome-wide performance of methods that can
predict TF binding across cell states by integrating DNA sequence and in vitro DNA shape with cell-
type-speci�c chromatin accessibility and gene expression [262]. A deep learning model called
FactorNet was amongst the top three performing methods in the challenge [263]. FactorNet uses a
multi-modal hybrid convolutional and recurrent architecture that integrates DNA sequence with
chromatin accessibility pro�les, gene expression, and evolutionary conservation of sequence. It is
worth noting that FactorNet was slightly outperformed by an approach that does not use neural
networks [264]. This top ranking approach uses an extensive set of curated features in a weighted
variant of a discriminative maximum conditional likelihood model in combination with a novel
iterative training strategy and model stacking. There appears to be signi�cant room for improvement
because none of the current approaches for cross cell type prediction explicitly account for the fact
that TFs can co-bind with distinct co-factors in di�erent cell states. In such cases, sequence features
that are predictive of TF binding in one cell state may be detrimental to predicting binding in another.

Singh et al. developed transfer string kernels for SVMs for cross-context TF binding [265]. Domain
adaptation methods that allow training neural networks which are transferable between di�ering
training and test set distributions of sequence features could be a promising avenue going forward
[266,267]. These approaches may also be useful for transferring TF binding models across species.

Another class of imputation-based cross cell type in vivo TF binding prediction methods leverage the
strong correlation between combinatorial binding landscapes of multiple TFs. Given a partially
complete panel of binding pro�les of multiple TFs in multiple cell types, a deep learning method called
TFImpute learns to predict the missing binding pro�le of a target TF in some target cell type in the
panel based on the binding pro�les of other TFs in the target cell type and the binding pro�le of the
target TF in other cell types in the panel [240]. However, TFImpute cannot generalize predictions
beyond the training panel of cell types and requires TF binding pro�les of related TFs.

It is worth noting that TF binding prediction methods in the literature based on neural networks and
other machine learning approaches choose to sample the set of bound and unbound sequences in a



variety of di�erent ways. These choices and the choice of performance evaluation measures
signi�cantly confound systematic comparison of model performance (see Discussion).

Several methods have also been developed to interpret neural network models of TF binding.
Alipanahi et al. visualize convolutional �lters to obtain insights into the sequence preferences of TFs
[250]. They also introduced in silico mutation maps for identifying important predictive nucleotides in
input DNA sequences by exhaustively forward propagating perturbations to individual nucleotides to
record the corresponding change in output prediction. Shrikumar et al. [268] proposed e�cient
backpropagation based approaches to simultaneously score the contribution of all nucleotides in an
input DNA sequence to an output prediction. Lanchantin et al. [253] developed tools to visualize TF
motifs learned from TF binding site classi�cation tasks. These and other general interpretation
techniques (see Discussion) will be critical to improve our understanding of the biologically
meaningful patterns learned by deep learning models of TF binding.

Promoters and enhancers

From TF binding to promoters and enhancers

Multiple TFs act in concert to coordinate changes in gene regulation at the genomic regions known as
promoters and enhancers. Each gene has an upstream promoter, essential for initiating that gene’s
transcription. The gene may also interact with multiple enhancers, which can amplify transcription in
particular cellular contexts. These contexts include di�erent cell types in development or
environmental stresses.

Promoters and enhancers provide a nexus where clusters of TFs and binding sites mediate
downstream gene regulation, starting with transcription. The gold standard to identify an active
promoter or enhancer requires demonstrating its ability to a�ect transcription or other downstream
gene products. Even extensive biochemical TF binding data has thus far proven insu�cient on its own
to accurately and comprehensively locate promoters and enhancers. We lack su�cient understanding
of these elements to derive a mechanistic “promoter code” or “enhancer code”. But extensive labeled
data on promoters and enhancers lends itself to probabilistic classi�cation. The complex interplay of
TFs and chromatin leading to the emergent properties of promoter and enhancer activity seems
particularly apt for representation by deep neural networks.

Promoters

Despite decades of work, computational identi�cation of promoters remains a stubborn problem
[269]. Researchers have used neural networks for promoter recognition as early as 1996 [270].
Recently, a CNN recognized promoter sequences with sensitivity and speci�city exceeding 90% [271].
Most activity in computational prediction of regulatory regions, however, has moved to enhancer
identi�cation. Because one can identify promoters with straightforward biochemical assays [272,273],
the direct rewards of promoter prediction alone have decreased. But the reliable ground truth
provided by these assays makes promoter identi�cation an appealing test bed for deep learning
approaches that can also identify enhancers.

Enhancers

Recognizing enhancers presents additional challenges. Enhancers may be up to 1,000,000 bp away
from the a�ected promoter, and even within introns of other genes [274]. Enhancers do not
necessarily operate on the nearest gene and may a�ect multiple genes. Their activity is frequently
tissue- or context-speci�c. No biochemical assay can reliably identify all enhancers. Distinguishing
them from other regulatory elements remains di�cult, and some believe the distinction somewhat



arti�cial [275]. While these factors make the enhancer identi�cation problem more di�cult, they also
make a solution more valuable.

Several neural network approaches yielded promising results in enhancer prediction. Both Basset
[276] and DeepEnhancer [277] used CNNs to predict enhancers. DECRES used a feed-forward neural
network [278] to distinguish between di�erent kinds of regulatory elements, such as active
enhancers, and promoters. DECRES had di�culty distinguishing between inactive enhancers and
promoters. They also investigated the power of sequence features to drive classi�cation, �nding that
beyond CpG islands, few were useful.

Comparing the performance of enhancer prediction methods illustrates the problems in using metrics
created with di�erent benchmarking procedures. Both the Basset and DeepEnhancer studies include
comparisons to a baseline SVM approach, gkm-SVM [249]. The Basset study reports gkm-SVM attains
a mean area under the precision-recall curve (AUPR) of 0.322 over 164 cell types [276]. The
DeepEnhancer study reports for gkm-SVM a dramatically di�erent AUPR of 0.899 on nine cell types
[277]. This large di�erence means it’s impossible to directly compare the performance of Basset and
DeepEnhancer based solely on their reported metrics. DECRES used a di�erent set of metrics
altogether. To drive further progress in enhancer identi�cation, we must develop a common and
comparable benchmarking procedure (see Discussion).

Promoter-enhancer interactions

In addition to the location of enhancers, identifying enhancer-promoter interactions in three-
dimensional space will provide critical knowledge for understanding transcriptional regulation. SPEID
used a CNN to predict these interactions with only sequence and the location of putative enhancers
and promoters along a one-dimensional chromosome [279]. It compared well to other methods using
a full complement of biochemical data from ChIP-seq and other epigenomic methods. Of course, the
putative enhancers and promoters used were themselves derived from epigenomic methods. But one
could easily replace them with the output of one of the enhancer or promoter prediction methods
above.

Micro-RNA binding

Prediction of microRNAs (miRNAs) and miRNA targets is of great interest, as they are critical
components of gene regulatory networks and are often conserved across great evolutionary distance
[280,281]. While many machine learning algorithms have been applied to these tasks, they currently
require extensive feature selection and optimization. For instance, one of the most widely adopted
tools for miRNA target prediction, TargetScan, trained multiple linear regression models on 14 hand-
curated features including structural accessibility of the target site on the mRNA, the degree of site
conservation, and predicted thermodynamic stability of the miRNA-mRNA complex [282]. Some of
these features, including structural accessibility, are imperfect or empirically derived. In addition,
current algorithms su�er from low speci�city [283].

As in other applications, deep learning promises to achieve equal or better performance in predictive
tasks by automatically engineering complex features to minimize an objective function. Two recently
published tools use di�erent recurrent neural network-based architectures to perform miRNA and
target prediction with solely sequence data as input [283,284]. Though the results are preliminary
and still based on a validation set rather than a completely independent test set, they were able to
predict microRNA target sites with higher speci�city and sensitivity than TargetScan. Excitingly, these
tools seem to show that RNNs can accurately align sequences and predict bulges, mismatches, and
wobble base pairing without requiring the user to input secondary structure predictions or
thermodynamic calculations. Further incremental advances in deep learning for miRNA and target
prediction will likely be su�cient to meet the current needs of systems biologists and other



researchers who use prediction tools mainly to nominate candidates that are then tested
experimentally.

Protein secondary and tertiary structure

Proteins play fundamental roles in almost all biological processes, and understanding their structure
is critical for basic biology and drug development. UniProt currently has about 94 million protein
sequences, yet fewer than 100,000 proteins across all species have experimentally-solved structures
in Protein Data Bank (PDB). As a result, computational structure prediction is essential for a majority
of proteins. However, this is very challenging, especially when similar solved structures, called
templates, are not available in PDB. Over the past several decades, many computational methods
have been developed to predict aspects of protein structure such as secondary structure, torsion
angles, solvent accessibility, inter-residue contact maps, disorder regions, and side-chain packing. In
recent years, multiple deep learning architectures have been applied, including deep belief networks,
LSTMs, CNNs, and deep convolutional neural �elds (DeepCNFs) [31,285].

Here we focus on deep learning methods for two representative sub-problems: secondary structure
prediction and contact map prediction. Secondary structure refers to local conformation of a
sequence segment, while a contact map contains information on all residue-residue contacts.
Secondary structure prediction is a basic problem and an almost essential module of any protein
structure prediction package. Contact prediction is much more challenging than secondary structure
prediction, but it has a much larger impact on tertiary structure prediction. In recent years, the
accuracy of contact prediction has greatly improved [29,286,287,288].

One can represent protein secondary structure with three di�erent states (alpha helix, beta strand,
and loop regions) or eight �ner-grained states. Accuracy of a three-state prediction is called Q3, and
accuracy of an 8-state prediction is called Q8. Several groups [30,289,290] applied deep learning to
protein secondary structure prediction but were unable to achieve signi�cant improvement over the
de facto standard method PSIPRED [291], which uses two shallow feedforward neural networks. In
2014, Zhou and Troyanskaya demonstrated that they could improve Q8 accuracy by using a deep
supervised and convolutional generative stochastic network [292]. In 2016 Wang et al. developed a
DeepCNF model that improved Q3 and Q8 accuracy as well as prediction of solvent accessibility and
disorder regions [31,285]. DeepCNF achieved a higher Q3 accuracy than the standard maintained by
PSIPRED for more than 10 years. This improvement may be mainly due to the ability of convolutional
neural �elds to capture long-range sequential information, which is important for beta strand
prediction. Nevertheless, the improvements in secondary structure prediction from DeepCNF are
unlikely to result in a commensurate improvement in tertiary structure prediction since secondary
structure mainly re�ects coarse-grained local conformation of a protein structure.

Protein contact prediction and contact-assisted folding (i.e. folding proteins using predicted contacts
as restraints) represents a promising new direction for ab initio folding of proteins without good
templates in PDB. Co-evolution analysis is e�ective for proteins with a very large number (>1000) of
sequence homologs [288], but fares poorly for proteins without many sequence homologs. By
combining co-evolution information with a few other protein features, shallow neural network
methods such as MetaPSICOV [286] and CoinDCA-NN [293] have shown some advantage over pure
co-evolution analysis for proteins with few sequence homologs, but their accuracy is still far from
satisfactory. In recent years, deeper architectures have been explored for contact prediction, such as
CMAPpro [294], DNCON [295] and PConsC [296]. However, blindly tested in the well-known CASP
competitions, these methods did not show any advantage over MetaPSICOV [286].

Recently, Wang et al. proposed the deep learning method RaptorX-Contact [29], which signi�cantly
improves contact prediction over MetaPSICOV and pure co-evolution methods, especially for proteins
without many sequence homologs. It employs a network architecture formed by one 1D residual



neural network and one 2D residual neural network. Blindly tested in the latest CASP competition
(i.e. CASP12 [297]), RaptorX-Contact ranked �rst in F₁ score on free-modeling targets as well as the
whole set of targets. In CAMEO (which can be interpreted as a fully-automated CASP) [298], its
predicted contacts were also able to fold proteins with a novel fold and only 65–330 sequence
homologs. This technique also worked well on membrane proteins even when trained on non-
membrane proteins [299]. RaptorX-Contact performed better mainly due to introduction of residual
neural networks and exploitation of contact occurrence patterns by simultaneously predicting all the
contacts in a single protein.

Taken together, ab initio folding is becoming much easier with the advent of direct evolutionary
coupling analysis and deep learning techniques. We expect further improvements in contact
prediction for proteins with fewer than 1000 homologs by studying new deep network architectures.
The deep learning methods summarized above also apply to interfacial contact prediction for protein
complexes but may be less e�ective since on average protein complexes have fewer sequence
homologs. Beyond secondary structure and contact maps, we anticipate increased attention to
predicting 3D protein structure directly from amino acid sequence and single residue evolutionary
information [300].

Structure determination and cryo-electron microscopy

Complementing computational prediction approaches, cryo-electron microscopy (cryo-EM) allows
near-atomic resolution determination of protein models by comparing individual electron
micrographs [301]. Detailed structures require tens of thousands of protein images [302].
Technological development has increased the throughput of image capture. New hardware, such as
direct electron detectors, has made large-scale image production practical, while new software has
focused on rapid, automated image processing.

Some components of cryo-EM image processing remain di�cult to automate. For instance, in particle
picking, micrographs are scanned to identify individual molecular images that will be used in structure
re�nement. In typical applications, hundreds of thousands of particles are necessary to determine a
structure to near atomic resolution, making manual selection impractical [302]. Typical selection
approaches are semi-supervised; a user will select several particles manually, and these selections will
be used to train a classi�er [303,304]. Now CNNs are being used to select particles in tools like
DeepPicker [305] and DeepEM [306]. In addition to addressing shortcomings from manual selection,
such as selection bias and poor discrimination of low-contrast images, these approaches also provide
a means of full automation. DeepPicker can be trained by reference particles from other experiments
with structurally unrelated macromolecules, allowing for fully automated application to new samples.

Downstream of particle picking, deep learning is being applied to other aspects of cryo-EM image
processing. Statistical manifold learning has been implemented in the software package ROME to
classify selected particles and elucidate the di�erent conformations of the subject molecule necessary
for accurate 3D structures [307]. These recent tools highlight the general applicability of deep learning
approaches for image processing to increase the throughput of high-resolution cryo-EM.

Protein-protein interactions

Protein-protein interactions (PPIs) are highly speci�c and non-accidental physical contacts between
proteins, which occur for purposes other than generic protein production or degradation [308].
Abundant interaction data have been generated in-part thanks to advances in high-throughput
screening methods, such as yeast two-hybrid and a�nity-puri�cation with mass spectrometry.
However, because many PPIs are transient or dependent on biological context, high-throughput
methods can fail to capture a number of interactions. The imperfections and costs associated with



many experimental PPI screening methods have motivated an interest in high-throughput
computational prediction.

Many machine learning approaches to PPI have focused on text mining the literature [309,310], but
these approaches can fail to capture context-speci�c interactions, motivating de novo PPI prediction.
Early de novo prediction approaches used a variety of statistical and machine learning tools on
structural and sequential data, sometimes with reference to the existing body of protein structure
knowledge. In the context of PPIs—as in other domains—deep learning shows promise both for
exceeding current predictive performance and for circumventing limitations from which other
approaches su�er.

One of the key di�culties in applying deep learning techniques to binding prediction is the task of
representing peptide and protein sequences in a meaningful way. DeepPPI [311] made PPI
predictions from a set of sequence and composition protein descriptors using a two-stage deep
neural network that trained two subnetworks for each protein and combined them into a single
network. Sun et al. [312] applied autocovariances, a coding scheme that returns uniform-size vectors
describing the covariance between physicochemical properties of the protein sequence at various
positions. Wang et al. [313] used deep learning as an intermediate step in PPI prediction. They
examined 70 amino acid protein sequences from each of which they extracted 1260 features. A
stacked sparse autoencoder with two hidden layers was then used to reduce feature dimensions and
noisiness before a novel type of classi�cation vector machine made PPI predictions.

Beyond predicting whether or not two proteins interact, Du et al. [314] employed a deep learning
approach to predict the residue contacts between two interacting proteins. Using features that
describe how similar a protein’s residue is relative to similar proteins at the same position, the
authors extracted uniform-length features for each residue in the protein sequence. A stacked
autoencoder took two such vectors as input for the prediction of contact between two residues. The
authors evaluated the performance of this method with several classi�ers and showed that a deep
neural network classi�er paired with the stacked autoencoder signi�cantly exceeded classical machine
learning accuracy.

Because many studies used prede�ned higher-level features, one of the bene�ts of deep learning—
automatic feature extraction—is not fully leveraged. More work is needed to determine the best ways
to represent raw protein sequence information so that the full bene�ts of deep learning as an
automatic feature extractor can be realized.

MHC-peptide binding

An important type of PPI involves the immune system’s ability to recognize the body’s own cells. The
major histocompatibility complex (MHC) plays a key role in regulating this process by binding antigens
and displaying them on the cell surface to be recognized by T cells. Due to its importance in immunity
and immune response, peptide-MHC binding prediction is a useful problem in computational biology,
and one that must account for the allelic diversity in MHC-encoding gene region.

Shallow, feed-forward neural networks are competitive methods and have made progress toward
pan-allele and pan-length peptide representations. Sequence alignment techniques are useful for
representing variable-length peptides as uniform-length features [315,316]. For pan-allelic prediction,
NetMHCpan [317,318] used a pseudo-sequence representation of the MHC class I molecule, which
included only polymorphic peptide contact residues. The sequences of the peptide and MHC were
then represented using both sparse vector encoding and Blosum encoding, in which amino acids are
encoded by matrix score vectors. A comparable method to the NetMHC tools is MHC�urry [319], a
method which shows superior performance on peptides of lengths other than nine. MHC�urry adds
placeholder amino acids to transform variable-length peptides to length 15 peptides. In training the



MHC�urry feed-forward neural network [320], the authors imputed missing MHC-peptide binding
a�nities using a Gibbs sampling method, showing that imputation improves performance for data-
sets with roughly 100 or fewer training examples. MHC�urry’s imputation method increases its
performance on poorly characterized alleles, making it competitive with NetMHCpan for this task.
Kuksa et al. [321] developed a shallow, higher-order neural network (HONN) comprised of both mean
and covariance hidden units to capture some of the higher-order dependencies between amino acid
locations. Pre-training this HONN with a semi-restricted Boltzmann machine, the authors found that
the performance of the HONN exceeded that of a simple deep neural network, as well as that of
NetMHC.

Deep learning’s unique �exibility was recently leveraged by Bhattacharya et al. [322], who used a
gated RNN method called MHCnuggets to overcome the di�culty of multiple peptide lengths. Under
this framework, they used smoothed sparse encoding to represent amino acids individually. Because
MHCnuggets had to be trained for every MHC allele, performance was far better for alleles with
abundant, balanced training data. Vang et al. [323] developed HLA-CNN, a method which maps amino
acids onto a 15-dimensional vector space based on their context relation to other amino acids before
making predictions with a CNN. In a comparison of several current methods, Bhattacharya et al. found
that the top methods—NetMHC, NetMHCpan, MHC�urry, and MHCnuggets—showed comparable
performance, but large di�erences in speed. Convolutional neural networks (in this case, HLA-CNN)
showed comparatively poor performance, while shallow and recurrent neural networks performed
the best. They found that MHCnuggets—the recurrent neural network—was by far the fastest-training
among the top performing methods.

PPI networks and graph analysis

Because interacting proteins are more likely to share a similar function, the connectivity of a PPI
network itself can be a valuable information source for the prediction of protein function [324]. To
incorporate higher-order network information, it is necessary to �nd a lower-level embedding of
network structure that preserves this higher-order structure. Rather than use hand-crafted network
features, deep learning shows promise for the automatic discovery of predictive features within
networks. For example, Navlakha [325] showed that a deep autoencoder was able to compress a
graph to 40% of its original size, while being able to reconstruct 93% of the original graph’s edges,
improving upon standard dimension reduction methods. To achieve this, each graph was represented
as an adjacency matrix with rows sorted in descending node degree order, then �attened into a
vector and given as input to the autoencoder. While the activity of some hidden layers correlated with
several popular hand-crafted network features such as k-core size and graph density, this work
showed that deep learning can e�ectively reduce graph dimensionality while retaining much of its
structural information.

An important challenge in PPI network prediction is the task of combining di�erent networks and
types of networks. Gligorijevic et al. [326] developed a multimodal deep autoencoder, deepNF, to �nd
a feature representation common among several di�erent PPI networks. This common lower-level
representation allows for the combination of various PPI data sources towards a single predictive
task. An SVM classi�er trained on the compressed features from the middle layer of the autoencoder
outperformed previous methods in predicting protein function.

Hamilton et al. addressed the issue of large, heterogeneous, and changing networks with an inductive
approach called GraphSAGE [327]. By �nding node embeddings through learned aggregator functions
that describe the node and its neighbors in the network, the GraphSAGE approach allows for the
generalization of the model to new graphs. In a classi�cation task for the prediction of protein
function, Chen and Zhu [328] optimized this approach and enhanced the graph convolutional
network with a preprocessing step that uses an approximation to the dropout operation. This



preprocessing e�ectively reduces the number of graph convolutional layers and it signi�cantly
improves both training time and prediction accuracy.

Morphological phenotypes

A �eld poised for dramatic revolution by deep learning is bioimage analysis. Thus far, the primary use
of deep learning for biological images has been for segmentation—that is, for the identi�cation of
biologically relevant structures in images such as nuclei, infected cells, or vasculature—in �uorescence
or even bright�eld channels [329]. Once so-called regions of interest have been identi�ed, it is often
straightforward to measure biological properties of interest, such as �uorescence intensities, textures,
and sizes. Given the dramatic successes of deep learning in biological imaging, we simply refer to
articles that review recent advancements [17,329,330]. However, user-friendly tools must be
developed for deep learning to become commonplace for biological image segmentation.

We anticipate an additional paradigm shift in bioimaging that will be brought about by deep learning:
what if images of biological samples, from simple cell cultures to three-dimensional organoids and
tissue samples, could be mined for much more extensive biologically meaningful information than is
currently standard? For example, a recent study demonstrated the ability to predict lineage fate in
hematopoietic cells up to three generations in advance of di�erentiation [331]. In biomedical
research, most often biologists decide in advance what feature to measure in images from their assay
system. Although classical methods of segmentation and feature extraction can produce hundreds of
metrics per cell in an image, deep learning is unconstrained by human intuition and can in theory
extract more subtle features through its hidden nodes. Already, there is evidence deep learning can
surpass the e�cacy of classical methods [332], even using generic deep convolutional networks
trained on natural images [333], known as transfer learning. Recent work by Johnson et al. [334]
demonstrated how the use of a conditional adversarial autoencoder allows for a probabilistic
interpretation of cell and nuclear morphology and structure localization from �uorescence images.
The proposed model is able to generalize well to a wide range of subcellular localizations. The
generative nature of the model allows it to produce high-quality synthetic images predicting
localization of subcellular structures by directly modeling the localization of �uorescent labels.
Notably, this approach reduces the modeling time by omitting the subcellular structure segmentation
step.

The impact of further improvements on biomedicine could be enormous. Comparing cell population
morphologies using conventional methods of segmentation and feature extraction has already
proven useful for functionally annotating genes and alleles, identifying the cellular target of small
molecules, and identifying disease-speci�c phenotypes suitable for drug screening [335,336,337].
Deep learning would bring to these new kinds of experiments—known as image-based pro�ling or
morphological pro�ling—a higher degree of accuracy, stemming from the freedom from human-
tuned feature extraction strategies.

Single-cell data

Single-cell methods are generating excitement as biologists characterize the vast heterogeneity within
unicellular species and between cells of the same tissue type in the same organism [338]. For
instance, tumor cells and neurons can both harbor extensive somatic variation [339]. Understanding
single-cell diversity in all its dimensions—genetic, epigenomic, transcriptomic, proteomic,
morphologic, and metabolic—is key if treatments are to be targeted not only to a speci�c individual,
but also to speci�c pathological subsets of cells. Single-cell methods also promise to uncover a wealth
of new biological knowledge. A su�ciently large population of single cells will have enough
representative “snapshots” to recreate timelines of dynamic biological processes. If tracking processes
over time is not the limiting factor, single-cell techniques can provide maximal resolution compared to



averaging across all cells in bulk tissue, enabling the study of transcriptional bursting with single-cell
�uorescence in situ hybridization or the heterogeneity of epigenomic patterns with single-cell Hi-C or
ATAC-seq [340,341]. Joint pro�ling of single-cell epigenomic and transcriptional states provides
unprecedented views of regulatory processes [342].

However, large challenges exist in studying single cells. Relatively few cells can be assayed at once
using current droplet, imaging, or microwell technologies, and low-abundance molecules or
modi�cations may not be detected by chance due to a phenomenon known as dropout, not to be
confused with the dropout layer of deep learning. To solve this problem, Angermueller et al. [211]
trained a neural network to predict the presence or absence of methylation of a speci�c CpG site in
single cells based on surrounding methylation signal and underlying DNA sequence, achieving several
percentage points of improvement compared to random forests or deep networks trained only on
CpG or sequence information. Similar deep learning methods have been applied to impute low-
resolution ChIP-seq signal from bulk tissue with great success, and they could easily be adapted to
single-cell data [240,343]. Deep learning has also been useful for dealing with batch e�ects [344].

Examining populations of single cells can reveal biologically meaningful subsets of cells as well as their
underlying gene regulatory networks [345]. Unfortunately, machine learning methods generally
struggle with imbalanced data—when there are many more examples of class 1 than class 2—
because prediction accuracy is usually evaluated over the entire dataset. To tackle this challenge,
Arvaniti et al. [346] classi�ed healthy and cancer cells expressing 25 markers by using the most
discriminative �lters from a CNN trained on the data as a linear classi�er. They achieved impressive
performance, even for cell types where the subset percentage ranged from 0.1 to 1%, signi�cantly
outperforming logistic regression and distance-based outlier detection methods. However, they did
not benchmark against random forests, which tend to work better for imbalanced data, and their data
was relatively low dimensional.

Neural networks can also learn low-dimensional representations of single-cell gene expression data
for visualization, clustering, and other tasks. Both scvis [347] and scVI [348] are unsupervised
approaches based on variational autoencoders (VAEs). Whereas scvis primarily focuses on single-cell
visualization as a replacement for t-SNE [227], the scVI model accounts for zero-in�ated expression
distributions and can impute zero values that are due to technical e�ects. Beyond VAEs, Lin et
al. developed a supervised model to predict cell type [349]. Similar to transfer learning approaches for
microscopy images [333], they demonstrated that the hidden layer representations were informative
in general and could be used to identify cellular subpopulations or match new cells to known cell
types. The supervised neural network’s representation was better overall at retrieving cell types than
alternatives, but all methods struggled to recover certain cell types such as hematopoietic stem cells
and inner cell mass cells. As the Human Cell Atlas [350] and related e�orts generate more single-cell
expression data, there will be opportunities to assess how well these low-dimensional representations
generalize to new cell types as well as abundant training data to learn broadly-applicable
representations.

The sheer quantity of omic information that can be obtained from each cell, as well as the number of
cells in each dataset, uniquely position single-cell data to bene�t from deep learning. In the future,
lineage tracing could be revolutionized by using autoencoders to reduce the feature space of
transcriptomic or variant data followed by algorithms to learn optimal cell di�erentiation trajectories
[351] or by feeding cell morphology and movement into neural networks [331]. Reinforcement
learning algorithms [352] could be trained on the evolutionary dynamics of cancer cells or bacterial
cells undergoing selection pressure and reveal whether patterns of adaptation are random or
deterministic, allowing us to develop therapeutic strategies that forestall resistance. We are excited to
see the creative applications of deep learning to single-cell biology that emerge over the next few
years.



Metagenomics

Metagenomics, which refers to the study of genetic material—16S rRNA or whole-genome shotgun
DNA—from microbial communities, has revolutionized the study of micro-scale ecosystems within
and around us. In recent years, machine learning has proved to be a powerful tool for metagenomic
analysis. 16S rRNA has long been used to deconvolve mixtures of microbial genomes, yet this ignores
more than 99% of the genomic content. Subsequent tools aimed to classify 300–3000 bp reads from
complex mixtures of microbial genomes based on tetranucleotide frequencies, which di�er across
organisms [353], using supervised [354,355] or unsupervised methods [356]. Then, researchers
began to use techniques that could estimate relative abundances from an entire sample faster than
classifying individual reads [357,358,359,360]. There is also great interest in identifying and
annotating sequence reads [361,362]. However, the focus on taxonomic and functional annotation is
just the �rst step. Several groups have proposed methods to determine host or environment
phenotypes from the organisms that are identi�ed [363,364,365,366] or overall sequence
composition [367]. Also, researchers have looked into how feature selection can improve
classi�cation [366,368], and techniques have been proposed that are classi�er-independent
[369,370].

Most neural networks are used for phylogenetic classi�cation or functional annotation from sequence
data where there is ample data for training. Neural networks have been applied successfully to gene
annotation (e.g. Orphelia [371] and FragGeneScan [372]). Representations (similar to word2vec [105]
in natural language processing) for protein family classi�cation have been introduced and classi�ed
with a skip-gram neural network [373]. Recurrent neural networks show good performance for
homology and protein family identi�cation [374,375].

One of the �rst techniques of de novo genome binning used self-organizing maps, a type of neural
network [356]. Essinger et al. [376] used Adaptive Resonance Theory to cluster similar genomic
fragments and showed that it had better performance than k-means. However, other methods based
on interpolated Markov models [377] have performed better than these early genome binners.
Neural networks can be slow and therefore have had limited use for reference-based taxonomic
classi�cation, with TAC-ELM [378] being the only neural network-based algorithm to taxonomically
classify massive amounts of metagenomic data. An initial study successfully applied neural networks
to taxonomic classi�cation of 16S rRNA genes, with convolutional networks providing about 10%
accuracy genus-level improvement over RNNs and random forests [379]. However, this study
evaluated only 3000 sequences.

Neural network uses for classifying phenotype from microbial composition are just beginning. A
simple multi-layer perceptron (MLP) was able to classify wound severity from microbial species
present in the wound [380]. Recently, Ditzler et al. associated soil samples with pH level using MLPs,
DBNs, and RNNs [381]. Besides classifying samples appropriately, internal phylogenetic tree nodes
inferred by the networks represented features for low and high pH. Thus, hidden nodes might provide
biological insight as well as new features for future metagenomic sample comparison. Also, an initial
study has shown promise of these networks for diagnosing disease [382].

Challenges remain in applying deep neural networks to metagenomics problems. They are not yet
ideal for phenotype classi�cation because most studies contain tens of samples and hundreds or
thousands of features (species). Such underdetermined, or ill-conditioned, problems are still a
challenge for deep neural networks that require many training examples. Also, due to convergence
issues [383], taxonomic classi�cation of reads from whole genome sequencing seems out of reach at
the moment for deep neural networks. There are only thousands of full-sequenced genomes as
compared to hundreds of thousands of 16S rRNA sequences available for training.



However, because RNNs have been applied to base calls for the Oxford Nanopore long-read
sequencer with some success [384] (discussed below), one day the entire pipeline, from denoising to
functional classi�cation, may be combined into one step using powerful LSTMs [385]. For example,
metagenomic assembly usually requires binning then assembly, but could deep neural nets
accomplish both tasks in one network? We believe the greatest potential in deep learning is to learn
the complete characteristics of a metagenomic sample in one complex network.

Sequencing and variant calling

While we have so far primarily discussed the role of deep learning in analyzing genomic data, deep
learning can also substantially improve our ability to obtain the genomic data itself. We discuss two
speci�c challenges: calling SNPs and indels (insertions and deletions) with high speci�city and
sensitivity and improving the accuracy of new types of data such as nanopore sequencing. These two
tasks are critical for studying rare variation, allele-speci�c transcription and translation, and splice site
mutations. In the clinical realm, sequencing of rare tumor clones and other genetic diseases will
require accurate calling of SNPs and indels.

Current methods achieve relatively high (>99%) precision at 90% recall for SNPs and indel calls from
Illumina short-read data [386], yet this leaves a large number of potentially clinically-important
remaining false positives and false negatives. These methods have so far relied on experts to build
probabilistic models that reliably separate signal from noise. However, this process is time consuming
and fundamentally limited by how well we understand and can model the factors that contribute to
noise. Recently, two groups have applied deep learning to construct data-driven unbiased noise
models. One of these models, DeepVariant, leverages Inception, a neural network trained for image
classi�cation by Google Brain, by encoding reads around a candidate SNP as a 221x100 bitmap image,
where each column is a nucleotide and each row is a read from the sample library [386]. The top 5
rows represent the reference, and the bottom 95 rows represent randomly sampled reads that
overlap the candidate variant. Each RGBA (red/green/blue/alpha) image pixel encodes the base (A, C,
G, T) as a di�erent red value, quality score as a green value, strand as a blue value, and variation from
the reference as the alpha value. The neural network outputs genotype probabilities for each
candidate variant. They were able to achieve better performance than GATK [387], a leading genotype
caller, even when GATK was given information about population variation for each candidate variant.
Another method, still in its infancy, hand-developed 62 features for each candidate variant and fed
these vectors into a fully connected deep neural network [388]. Unfortunately, this feature set
required at least 15 iterations of software development to �ne-tune, which suggests that these
models may not generalize.

Variant calling will bene�t more from optimizing neural network architectures than from developing
features by hand. An interesting and informative next step would be to rigorously test if encoding raw
sequence and quality data as an image, tensor, or some other mixed format produces the best variant
calls. Because many of the latest neural network architectures (ResNet, Inception, Xception, and
others) are already optimized for and pre-trained on generic, large-scale image datasets [389],
encoding genomic data as images could prove to be a generally e�ective and e�cient strategy.

In limited experiments, DeepVariant was robust to sequencing depth, read length, and even species
[386]. However, a model built on Illumina data, for instance, may not be optimal for Paci�c
Biosciences long-read data or MinION nanopore data, which have vastly di�erent speci�city and
sensitivity pro�les and signal-to-noise characteristics. Recently, Boza et al. used bidirectional recurrent
neural networks to infer the E. coli sequence from MinION nanopore electric current data with higher
per-base accuracy than the proprietary hidden Markov model-based algorithm Metrichor [384].
Unfortunately, training any neural network requires a large amount of data, which is often not
available for new sequencing technologies. To circumvent this, one very preliminary study simulated
mutations and spiked them into somatic and germline RNA-seq data, then trained and tested a neural



network on simulated paired RNA-seq and exome sequencing data [390]. Despite subsequent
evaluation [391] on real somatic mutation data from the International Cancer Genome Consortium
[392], further assessments are required to determine whether simulation can produce su�ciently
realistic data to train reliable models.

Method development for interpreting new types of sequencing data has historically taken two steps:
�rst, easily implemented hard cuto�s that prioritize speci�city over sensitivity, then expert
development of probabilistic models with hand-developed inputs [390]. We anticipate that these
steps will be replaced by deep learning, which will infer features simply by its ability to optimize a
complex model against data.

Neuroscience

Arti�cial neural networks were originally conceived as a model for computation in the brain [7].
Although deep neural networks have evolved to become a workhorse across many �elds, there is still
a strong connection between deep networks and the study of the brain. The rich parallel history of
arti�cial neural networks in computer science and neuroscience is reviewed in [393,394,395].

Convolutional neural networks were originally conceived as faithful models of visual information
processing in the primate visual system, and are still considered so [396]. The activations of hidden
units in consecutive layers of deep convolutional networks have been found to parallel the activity of
neurons in consecutive brain regions involved in processing visual scenes. Such models of neural
computation are called “encoding” models, as they predict how the nervous system might encode
sensory information in the world.

Even when they are not directly modeling biological neurons, deep networks have been a useful
computational tool in neuroscience. They have been developed as statistical time series models of
neural activity in the brain. And in contrast to the encoding models described earlier, these models
are used for decoding neural activity, for instance in brain machine interfaces [397]. They have been
crucial to the �eld of connectomics, which is concerned with mapping the connectivity of biological
neural networks in the brain. In connectomics, deep networks are used to segment the shapes of
individual neurons and to infer their connectivity from 3D electron microscopic images [398], and
they have also been used to infer causal connectivity from optical measurement and perturbation of
neural activity [399].

It is an exciting time for neuroscience. Recent rapid progress in deep networks continues to inspire
new machine learning based models of brain computation [393]. And neuroscience continues to
inspire new models of arti�cial intelligence [395].

The impact of deep learning in treating disease and developing
new treatments

Given the need to make better, faster interventions at the point of care—incorporating the complex
calculus of a patient’s symptoms, diagnostics, and life history—there have been many attempts to
apply deep learning to patient treatment. Success in this area could help to enable personalized
healthcare or precision medicine [400,401]. Earlier, we reviewed approaches for patient
categorization. Here, we examine the potential for better treatment, which broadly, may be divided
into methods for improved choices of interventions for patients and those for development of new
interventions.

Clinical decision making



In 1996, Tu [402] compared the e�ectiveness of arti�cial neural networks and logistic regression,
questioning whether these techniques would replace traditional statistical methods for predicting
medical outcomes such as myocardial infarction [403] or mortality [404]. He posited that while neural
networks have several advantages in representational power, the di�culties in interpretation may
limit clinical applications, a limitation that still remains today. In addition, the challenges faced by
physicians parallel those encountered by deep learning. For a given patient, the number of possible
diseases is very large, with a long tail of rare diseases and patients are highly heterogeneous and may
present with very di�erent signs and symptoms for the same disease. Still, in 2006 Lisboa and Taktak
[405] examined the use of arti�cial neural networks in medical journals, concluding that they
improved healthcare relative to traditional screening methods in 21 of 27 studies. Recent applications
of deep learning in pharmacogenomics and pharmacoepigenomics show the potential for improving
patient treatment response and outcome prediction using patient-speci�c data, pharmacogenomic
targets, and pharmacological knowledge bases [20].

While further progress has been made in using deep learning for clinical decision making, it is
hindered by a challenge common to many deep learning applications: it is much easier to predict an
outcome than to suggest an action to change the outcome. Several attempts [121,123] at recasting
the clinical decision-making problem into a prediction problem (i.e. prediction of which treatment will
most improve the patient’s health) have accurately predicted survival patterns, but technical and
medical challenges remain for clinical adoption (similar to those for categorization). In particular,
remaining barriers include actionable interpretability of deep learning models, �tting deep models to
limited and heterogeneous data, and integrating complex predictive models into a dynamic clinical
environment.

A critical challenge in providing treatment recommendations is identifying a causal relationship for
each recommendation. Causal inference is often framed in terms of counterfactual question [406].
Johansson et al. [407] use deep neural networks to create representation models for covariates that
capture nonlinear e�ects and show signi�cant performance improvements over existing models. In a
less formal approach, Kale et al. [408] �rst create a deep neural network to model clinical time series
and then analyze the relationship of the hidden features to the output using a causal approach.

A common challenge for deep learning is the interpretability of the models and their predictions. The
task of clinical decision making is necessarily risk-averse, so model interpretability is key. Without
clear reasoning, it is di�cult to establish trust in a model. As described above, there has been some
work to directly assign treatment plans without interpretability; however, the removal of human
experts from the decision-making loop make the models di�cult to integrate with clinical practice. To
alleviate this challenge, several studies have attempted to create more interpretable deep models,
either speci�cally for healthcare or as a general procedure for deep learning (see Discussion).

Predicting patient trajectories

A common application for deep learning in this domain is the temporal structure of healthcare
records. Many studies [409,410,411,412] have used RNNs to categorize patients, but most stop short
of suggesting clinical decisions. Nemati et al. [413] used deep reinforcement learning to optimize a
heparin dosing policy for intensive care patients. However, because the ideal dosing policy is
unknown, the model’s predictions must be evaluated on counter-factual data. This represents a
common challenge when bridging the gap between research and clinical practice. Because the
ground-truth is unknown, researchers struggle to evaluate model predictions in the absence of
interventional data, but clinical application is unlikely until the model has been shown to be e�ective.
The impressive applications of deep reinforcement learning to other domains [352] have relied on
knowledge of the underlying processes (e.g. the rules of the game). Some models have been
developed for targeted medical problems [414], but a generalized engine is beyond current
capabilities.



Clinical trial e�ciency

A clinical deep learning task that has been more successful is the assignment of patients to clinical
trials. Ithapu et al. [415] used a randomized denoising autoencoder to learn a multimodal imaging
marker that predicts future cognitive and neural decline from positron emission tomography (PET),
amyloid �orbetapir PET, and structural magnetic resonance imaging. By accurately predicting which
cases will progress to dementia, they were able to e�ciently assign patients to a clinical trial and
reduced the required sample sizes by a factor of �ve. Similarly, Artemov et al. [416] applied deep
learning to predict which clinical trials were likely to fail and which were likely to succeed. By
predicting the side e�ects and pathway activations of each drug and translating these activations to a
success probability, their deep learning-based approach was able to signi�cantly outperform a
random forest classi�er trained on gene expression changes. These approaches suggest promising
directions to improve the e�ciency of clinical trials and accelerate drug development.

Drug repositioning

Drug repositioning (or repurposing) is an attractive option for delivering new drugs to the market
because of the high costs and failure rates associated with more traditional drug discovery
approaches [417,418]. A decade ago, the Connectivity Map [419] had a sizeable impact. Reverse
matching disease gene expression signatures with a large set of reference compound pro�les allowed
researchers to formulate repurposing hypotheses at scale using a simple non-parametric test. Since
then, several advanced computational methods have been applied to formulate and validate drug
repositioning hypotheses [420,421,422]. Using supervised learning and collaborative �ltering to
tackle this type of problem is proving successful, especially when coupling disease or compound omic
data with topological information from protein-protein or protein-compound interaction networks
[423,424,425].

For example, Menden et al. [426] used a shallow neural network to predict sensitivity of cancer cell
lines to drug treatment using both cell line and drug features, opening the door to precision medicine
and drug repositioning opportunities in cancer. More recently, Aliper et al. [37] used gene- and
pathway-level drug perturbation transcriptional pro�les from the Library of Network-Based Cellular
Signatures [427] to train a fully connected deep neural network to predict drug therapeutic uses and
indications. By using confusion matrices and leveraging misclassi�cation, the authors formulated a
number of interesting hypotheses, including repurposing cardiovascular drugs such as otenzepad and
pinacidil for neurological disorders.

Drug repositioning can also be approached by attempting to predict novel drug-target interactions
and then repurposing the drug for the associated indication [428,429]. Wang et al. [430] devised a
pairwise input neural network with two hidden layers that takes two inputs, a drug and a target
binding site, and predicts whether they interact. Wang et al. [38] trained individual RBMs for each
target in a drug-target interaction network and used these models to predict novel interactions
pointing to new indications for existing drugs. Wen et al. [39] extended this concept to deep learning
by creating a DBN called DeepDTIs, which predicts interactions using chemical structure and protein
sequence features.

Drug repositioning appears an obvious candidate for deep learning both because of the large amount
of high-dimensional data available and the complexity of the question being asked. However, perhaps
the most promising piece of work in this space [37] is more of a proof of concept than a real-world
hypothesis-generation tool; notably, deep learning was used to predict drug indications but not for
the actual repositioning. At present, some of the most popular state-of-the-art methods for signature-
based drug repurposing [431] do not use predictive modeling. A mature and production-ready
framework for drug repositioning via deep learning is currently missing.



Drug development

Ligand-based prediction of bioactivity

High-throughput chemical screening in biomedical research aims to improve therapeutic options over
a long term horizon [22]. The objective is to discover which small molecules (also referred to as
chemical compounds or ligands) speci�cally a�ect the activity of a target, such as a kinase, protein-
protein interaction, or broader cellular phenotype. This screening is often one of the �rst steps in a
long drug discovery pipeline, where novel molecules are pursued for their ability to inhibit or enhance
disease-relevant biological mechanisms [432]. Initial hits are con�rmed to eliminate false positives
and proceed to the lead generation stage [433], where they are evaluated for absorption, distribution,
metabolism, excretion, and toxicity (ADMET) and other properties. It is desirable to advance multiple
lead series, clusters of structurally-similar active chemicals, for further optimization by medicinal
chemists to protect against unexpected failures in the later stages of drug discovery [432].

Computational work in this domain aims to identify su�cient candidate active compounds without
exhaustively screening libraries of hundreds of thousands or millions of chemicals. Predicting
chemical activity computationally is known as virtual screening. An ideal algorithm will rank a
su�cient number of active compounds before the inactives, but the rankings of actives relative to
other actives and inactives are less important [434]. Computational modeling also has the potential to
predict ADMET traits for lead generation [435] and how drugs are metabolized [436].

Ligand-based approaches train on chemicals’ features without modeling target features (e.g. protein
structure). Neural networks have a long history in this domain [21,23], and the 2012 Merck Molecular
Activity Challenge on Kaggle generated substantial excitement about the potential for high-parameter
deep learning approaches. The winning submission was an ensemble that included a multi-task multi-
layer perceptron network [437]. The sponsors noted drastic improvements over a random forest
baseline, remarking “we have seldom seen any method in the past 10 years that could consistently
outperform [random forest] by such a margin” [438], but not all outside experts were convinced
[439]. Subsequent work (reviewed in more detail by Goh et al. [4]) explored the e�ects of jointly
modeling far more targets than the Merck challenge [440,441], with Ramsundar et al. [441] showing
that the bene�ts of multi-task networks had not yet saturated even with 259 targets. Although
DeepTox [442], a deep learning approach, won another competition, the Toxicology in the 21st
Century (Tox21) Data Challenge, it did not dominate alternative methods as thoroughly as in other
domains. DeepTox was the top performer on 9 of 15 targets and highly competitive with the top
performer on the others. However, for many targets there was little separation between the top two
or three methods.

The nuanced Tox21 performance may be more re�ective of the practical challenges encountered in
ligand-based chemical screening than the extreme enthusiasm generated by the Merck competition. A
study of 22 ADMET tasks demonstrated that there are limitations to multi-task transfer learning that
are in part a consequence of the degree to which tasks are related [435]. Some of the ADMET datasets
showed superior performance in multi-task models with only 22 ADMET tasks compared to multi-task
models with over 500 less-similar tasks. In addition, the training datasets encountered in practical
applications may be tiny relative to what is available in public datasets and organized competitions. A
study of BACE-1 inhibitors included only 1547 compounds [443]. Machine learning models were able
to train on this limited dataset, but over�tting was a challenge and the di�erences between random
forests and a deep neural network were negligible, especially in the classi�cation setting. Over�tting is
still a problem in larger chemical screening datasets with tens or hundreds of thousands of
compounds because the number of active compounds can be very small, on the order of 0.1% of all
tested chemicals for a typical target [444]. This has motivated low-parameter neural networks that
emphasize compound-compound similarity, such as in�uence-relevance voter [434,445], instead of
predicting compound activity directly from chemical features.



Chemical featurization and representation learning

Much of the recent excitement in this domain has come from what could be considered a creative
experimentation phase, in which deep learning has o�ered novel possibilities for feature
representation and modeling of chemical compounds. A molecular graph, where atoms are labeled
nodes and bonds are labeled edges, is a natural way to represent a chemical structure. Chemical
features can be represented as a list of molecular descriptors such as molecular weight, atom counts,
functional groups, charge representations, summaries of atom-atom relationships in the molecular
graph, and more sophisticated derived properties [446]. Traditional machine learning approaches
relied on preprocessing the graph into a feature vector of molecular descriptors or a �xed-width bit
vector known as a �ngerprint [447]. The same �ngerprints have been used by some drug-target
interaction methods discussed above [39]. An overly simplistic but approximately correct view of
chemical �ngerprints is that each bit represents the presence or absence of a particular chemical
substructure in the molecular graph. Instead of using molecular descriptors or �ngerprints as input,
modern neural networks can represent chemicals as textual strings [448] or images [449] or operate
directly on the molecular graph, which has enabled strategies for learning novel chemical
representations.

Virtual screening and chemical property prediction have emerged as one of the major applications
areas for graph-based neural networks. Duvenaud et al. [450] generalized standard circular
�ngerprints by substituting discrete operations in the �ngerprinting algorithm with operations in a
neural network, producing a real-valued feature vector instead of a bit vector. Other approaches o�er
trainable networks that can learn chemical feature representations that are optimized for a particular
prediction task. Lusci et al. [451] applied recursive neural networks for directed acyclic graphs to
undirected molecular graphs by creating an ensemble of directed graphs in which one atom is
selected as the root node. Graph convolutions on undirected molecular graphs have eliminated the
need to enumerate arti�cially directed graphs, learning feature vectors for atoms that are a function
of the properties of neighboring atoms and local regions on the molecular graph [452,453,454]. More
sophisticated graph algorithms [455,456] addressed limitations of standard graph convolutions that
primarily operate on each node’s local neighborhood. We anticipate that these graph-based neural
networks could also be applicable in other types of biological networks, such as the PPI networks we
discussed previously.

Advances in chemical representation learning have also enabled new strategies for learning chemical-
chemical similarity functions. Altae-Tran et al. developed a one-shot learning network [453] to address
the reality that most practical chemical screening studies are unable to provide the thousands or
millions of training compounds that are needed to train larger multi-task networks. Using graph
convolutions to featurize chemicals, the network learns an embedding from compounds into a
continuous feature space such that compounds with similar activities in a set of training tasks have
similar embeddings. The approach is evaluated in an extremely challenging setting. The embedding is
learned from a subset of prediction tasks (e.g. activity assays for individual proteins), and only one to
ten labeled examples are provided as training data on a new task. On Tox21 targets, even when
trained with one task-speci�c active compound and one inactive compound, the model is able to
generalize reasonably well because it has learned an informative embedding function from the
related tasks. Random forests, which cannot take advantage of the related training tasks, trained in
the same setting are only slightly better than a random classi�er. Despite the success on Tox21,
performance on MUV datasets, which contains assays designed to be challenging for chemical
informatics algorithms, is considerably worse. The authors also demonstrate the limitations of
transfer learning as embeddings learned from the Tox21 assays have little utility for a drug adverse
reaction dataset.

These novel, learned chemical feature representations may prove to be essential for accurately
predicting why some compounds with similar structures yield similar target e�ects and others



produce drastically di�erent results. Currently, these methods are enticing but do not necessarily
outperform classic approaches by a large margin. The neural �ngerprints [450] were narrowly beaten
by regression using traditional circular �ngerprints on a drug e�cacy prediction task but were
superior for predicting solubility or photovoltaic e�ciency. In the original study, graph convolutions
[452] performed comparably to a multi-task network using standard �ngerprints and slightly better
than the neural �ngerprints [450] on the drug e�cacy task but were slightly worse than the in�uence-
relevance voter method on an HIV dataset [434]. Broader recent benchmarking has shown that
relative merits of these methods depends on the dataset and cross validation strategy [457], though
evaluation in this domain often uses area under the receiver operating characteristic curve (AUROC)
[458], which has limited utility due to the large class imbalance (see Discussion).

We remain optimistic for the potential of deep learning and speci�cally representation learning in
drug discovery. Rigorous benchmarking on broad and diverse prediction tasks will be as important as
novel neural network architectures to advance the state of the art and convincingly demonstrate
superiority over traditional cheminformatics techniques. Fortunately, there has recently been much
progress in this direction. The DeepChem software [453,459] and MoleculeNet benchmarking suite
[457] built upon it contain chemical bioactivity and toxicity prediction datasets, multiple compound
featurization approaches including graph convolutions, and various machine learning algorithms
ranging from standard baselines like logistic regression and random forests to recent neural network
architectures. Independent research groups have already contributed additional datasets and
prediction algorithms to DeepChem. Adoption of common benchmarking evaluation metrics,
datasets, and baseline algorithms has the potential to establish the practical utility of deep learning in
chemical bioactivity prediction and lower the barrier to entry for machine learning researchers
without biochemistry expertise.

One open question in ligand-based screening pertains to the bene�ts and limitations of transfer
learning. Multi-task neural networks have shown the advantages of jointly modeling many targets
[440,441]. Other studies have shown the limitations of transfer learning when the prediction tasks are
insu�ciently related [435,453]. This has important implications for representation learning. The
typical approach to improve deep learning models by expanding the dataset size may not be
applicable if only “related” tasks are bene�cial, especially because task-task relatedness is ill-de�ned.
The massive chemical state space will also in�uence the development of unsupervised representation
learning methods [448,460]. Future work will establish whether it is better to train on massive
collections of diverse compounds, drug-like small molecules, or specialized subsets.

Structure-based prediction of bioactivity

When protein structure is available, virtual screening has traditionally relied on docking programs to
predict how a compound best �ts in the target’s binding site and score the predicted ligand-target
complex [461]. Recently, deep learning approaches have been developed to model protein structure,
which is expected to improve upon the simpler drug-target interaction algorithms described above
that represent proteins with feature vectors derived from amino acid sequences [39,430].

Structure-based deep learning methods di�er in whether they use experimentally-derived or
predicted ligand-target complexes and how they represent the 3D structure. The Atomic CNN [462]
and TopologyNet [463] models take 3D structures from PDBBind [464] as input, ensuring the ligand-
target complexes are reliable. AtomNet [36] samples multiple ligand poses within the target binding
site, and DeepVS [465] and Ragoza et al. [466] use a docking program to generate protein-compound
complexes. If they are su�ciently accurate, these latter approaches would have wider applicability to
a much larger set of compounds and proteins. However, incorrect ligand poses will be misleading
during training, and the predictive performance is sensitive to the docking quality [465].



There are two established options for representing a protein-compound complex. One option, a 3D
grid, can featurize the input complex [36,466]. Each entry in the grid tracks the types of protein and
ligand atoms in that region of the 3D space or descriptors derived from those atoms. Alternatively,
DeepVS [465] and atomic convolutions [462] o�er greater �exibility in their convolutions by
eschewing the 3D grid. Instead, they each implement techniques for executing convolutions over
atoms’ neighboring atoms in the 3D space. Gomes et al. demonstrate that currently random forest on
a 1D feature vector that describes the 3D ligand-target structure generally outperforms neural
networks on the same feature vector as well as atomic convolutions and ligand-based neural
networks when predicting the continuous-valued inhibition constant on the PDBBind re�ned dataset
[462]. However, in the long term, atomic convolutions may ultimately overtake grid-based methods,
as they provide greater freedom to model atom-atom interactions and the forces that govern binding
a�nity.

De novo drug design

De novo drug design attempts to model the typical design-synthesize-test cycle of drug discovery in
silico [467,468]. It explores an estimated 1060 synthesizable organic molecules with drug-like
properties without explicit enumeration [444]. To score molecules after generation or during
optimization, physics-based simulation could be used [469], but machine learning models based on
techniques discussed earlier may be preferable [448], as they are much more computationally
expedient. Computational e�ciency is particularly important during optimization as the “scoring
function” may need to be called thousands of times.

To “design” and “synthesize”, traditional de novo design software relied on classical optimizers such as
genetic algorithms. These algorithms use a list of hard-coded rules to perform virtual chemical
reactions on molecular structures during each iteration, leading to physically stable and synthesizable
molecules [468]. Deep learning models have been proposed as an alternative. In contrast to the
classical approaches, in theory generative models learned from big data would not require laboriously
encoded expert knowledge to generate realistic, synthesizable molecules.

In the past few years, a large number of techniques for the generative modeling and optimization of
molecules with deep learning have been explored, including RNNs, VAEs, GANs, and reinforcement
learning—for a review see Elton et al. [470] or Vamathevan et al. [471].

Building o� the large amount of work that has already gone into text generation [472], many
generative neural networks for drug design initially represented chemicals with the simpli�ed
molecular-input line-entry system (SMILES), a standard string-based representation with characters
that represent atoms, bonds, and rings [473].

The �rst successful demonstration of a deep learning based approach for molecular optimization
occurred in 2016 with the development of a SMILES-to-SMILES autoencoder capable of learning a
continuous latent feature space for molecules [448]. In this learned continuous space it is possible to
interpolate between molecular structures in a manner that is not possible with discrete (e.g. bit vector
or string) features or in symbolic, molecular graph space. Even more interesting is that one can
perform gradient-based or Bayesian optimization of molecules within this latent space. The strategy
of constructing simple, continuous features before applying supervised learning techniques is
reminiscent of autoencoders trained on high-dimensional EHR data [115]. A drawback of the SMILES-
to-SMILES autoencoder is that not all SMILES strings produced by the autoencoder’s decoder
correspond to valid chemical structures. The Grammar Variational Autoencoder, which takes the
SMILES grammar into account and is guaranteed to produce syntactically valid SMILES, helps alleviate
this issue to some extent [474].



Another approach to de novo design is to train character-based RNNs on large collections of
molecules, for example, ChEMBL [475], to �rst obtain a generic generative model for drug-like
compounds [473]. These generative models successfully learn the grammar of compound
representations, with 94% [476] or nearly 98% [473] of generated SMILES corresponding to valid
molecular structures. The initial RNN is then �ne-tuned to generate molecules that are likely to be
active against a speci�c target by either continuing training on a small set of positive examples [473]
or adopting reinforcement learning strategies [476,477]. Both the �ne-tuning and reinforcement
learning approaches can rediscover known, held-out active molecules.

Reinforcement learning approaches where operations are performed directly on the molecular graph
bypass the need to learn the details of SMILES syntax, allowing the model to focus purely on
chemistry. Additionally, they seem to require less training data and generate more valid molecules
since they are constrained by design only to graph operations which satisfy chemical valiance rules
[470]. A reinforcement learning agent developed by Zhou et al. [478] demonstrated superior
molecular optimization performance on optimizing the quantitative estimate of drug-likeness (QED)
metric and the “penalized logP” metric (logP minus the synthetic accessibility) when compared with
other deep learning based approaches such as the Junction Tree VAE [479], Objective-Reinforced
Generative Adversarial Network [480], and Graph Convolutional Policy Network [481]. As another
example, Zhavoronkov et al. used generative tensorial reinforcement learning to discover inhibitors of
discoidin domain receptor 1 (DDR1) [482]. In contrast to most previous work, six lead candidates
discovered using their approach were synthesized and tested in the lab, with 4/6 achieving some
degree of binding to DDR1. One of the molecules was chosen for further testing and showed
promising results in a cancer cell line and mouse model [482].

In concluding this section, we want to highlight two areas where work is still needed before AI can
bring added value to the existing drug discovery process—novelty and synthesizability. The work of
Zhavoronkov et al. is arguably an important milestone and received much fanfare in the popular
press, but Walters and Murko have presented a more sober assessment, noting that the generated
molecule they choose to test in the lab is very similar to an existing drug that was present in their
training data [483]. Small variations of existing molecules are likely not to be much better and may
not be patentable. One way to tackle this problem is to add novelty and diversity metrics to the
reward function of reinforcement learning based algorithms. Novelty should also be taken into
account when comparing di�erent models—and thus is included in the proposed GuacaMol
benchmark (2019) for accessing generative molecules for molecular design [484]. The other area
which has been pointed to as a key limitation of current approaches is synthesizability [485,486].
Current heuristics of synthesizability, such as the synthetic accessibility score, are based on a
relatively limited domain of chemical data and are too restrictive, so better models of synthesizability
should help in this area [485].

As noted before, genetic algorithms use hard-coded rules based on possible chemical reactions to
generate molecular structures and therefore may have less trouble generating synthesizable
molecules [468]. We note in passing that Jensen (2018) [487] and Yoshikawa et al. (2019) [488] have
both demonstrated genetic algorithms that are competitive with deep learning approaches. Progress
on overcoming both of these shortcomings is proceeding on many fronts, and we believe the future of
deep learning for molecular design is quite bright.

Discussion

Despite the disparate types of data and scienti�c goals in the learning tasks covered above, several
challenges are broadly important for deep learning in the biomedical domain. Here we examine these
factors that may impede further progress, ask what steps have already been taken to overcome them,
and suggest future research directions.



Customizing deep learning models re�ects a tradeo� between bias
and variance

Some of the challenges in applying deep learning are shared with other machine learning methods. In
particular, many problem-speci�c optimizations described in this review re�ect a recurring universal
tradeo�—controlling the �exibility of a model in order to maximize predictivity. Methods for adjusting
the �exibility of deep learning models include dropout, reduced data projections, and transfer
learning (described below). One way of understanding such model optimizations is that they
incorporate external information to limit model �exibility and thereby improve predictions. This
balance is formally described as a tradeo� between “bias and variance” [11].

Although the bias-variance tradeo� is common to all machine learning applications, recent empirical
and theoretical observations suggest that deep learning models may have uniquely advantageous
generalization properties [489,490]. Nevertheless, additional advances will be needed to establish a
coherent theoretical foundation that enables practitioners to better reason about their models from
�rst principles.

Evaluation metrics for imbalanced classi�cation

Making predictions in the presence of high class imbalance and di�erences between training and
generalization data is a common feature of many large biomedical datasets, including deep learning
models of genomic features, patient classi�cation, disease detection, and virtual screening. Prediction
of transcription factor binding sites exempli�es the di�culties with learning from highly imbalanced
data. The human genome has 3 billion base pairs, and only a small fraction of them are implicated in
speci�c biochemical activities. Less than 1% of the genome can be con�dently labeled as bound for
most transcription factors.

Estimating the false discovery rate (FDR) is a standard method of evaluation in genomics that can also
be applied to deep learning model predictions of genomic features. Using deep learning predictions
for targeted validation experiments of speci�c biochemical activities necessitates a more stringent
FDR (typically 5–25%). However, when predicted biochemical activities are used as features in other
models, such as gene expression models, a low FDR may not be necessary.

What is the correspondence between FDR metrics and commonly used classi�cation metrics such as
AUPR and AUROC? AUPR evaluates the average precision, or equivalently, the average FDR across all
recall thresholds. This metric provides an overall estimate of performance across all possible use
cases, which can be misleading for targeted validation experiments. For example, classi�cation of TF
binding sites can exhibit a recall of 0% at 10% FDR and AUPR greater than 0.6. In this case, the AUPR
may be competitive, but the predictions are ill-suited for targeted validation that can only examine a
few of the highest-con�dence predictions. Likewise, AUROC evaluates the average recall across all
false positive rate (FPR) thresholds, which is often a highly misleading metric in class-imbalanced
domains [72,491]. Consider a classi�cation model with recall of 0% at FDR less than 25% and 100%
recall at FDR greater than 25%. In the context of TF binding predictions where only 1% of genomic
regions are bound by the TF, this is equivalent to a recall of 100% for FPR greater than 0.33%. In other
words, the AUROC would be 0.9967, but the classi�er would be useless for targeted validation. It is not
unusual to obtain a chromosome-wide AUROC greater than 0.99 for TF binding predictions but a recall
of 0% at 10% FDR. Consequently, practitioners must select the metric most tailored to their
subsequent use case to use these methods most e�ectively.

Formulation of classi�cation labels



Genome-wide continuous signals are commonly formulated into classi�cation labels through signal
peak detection. ChIP-seq peaks are used to identify locations of TF binding and histone modi�cations.
Such procedures rely on thresholding criteria to de�ne what constitutes a peak in the signal. This
inevitably results in a set of signal peaks that are close to the threshold, not su�cient to constitute a
positive label but too similar to positively labeled examples to constitute a negative label. To avoid an
arbitrary label for these examples they may be labeled as “ambiguous”. Ambiguously labeled
examples can then be ignored during model training and evaluation of recall and FDR. The correlation
between model predictions on these examples and their signal values can be used to evaluate if the
model correctly ranks these examples between positive and negative examples.

Formulation of a performance upper bound

In assessing the upper bound on the predictive performance of a deep learning model, it is necessary
to incorporate inherent between-study variation inherent to biomedical research [492]. Study-level
variability limits classi�cation performance and can lead to underestimating prediction error if the
generalization error is estimated by splitting a single dataset. Analyses can incorporate data from
multiple labs and experiments to capture between-study variation within the prediction model
mitigating some of these issues.

Uncertainty quanti�cation

Deep learning based solutions for biomedical applications could substantially bene�t from guarantees
on the reliability of predictions and a quanti�cation of uncertainty. Due to biological variability and
precision limits of equipment, biomedical data do not consist of precise measurements but of
estimates with noise. Hence, it is crucial to obtain uncertainty measures that capture how noise in
input values propagates through deep neural networks. Such measures can be used for reliability
assessment of automated decisions in clinical and public health applications, and for guarding against
model vulnerabilities in the face of rare or adversarial cases [493]. Moreover, in fundamental
biological research, measures of uncertainty help researchers distinguish between true regularities in
the data and patterns that are false or merely anecdotal. There are two main uncertainties that one
can calculate: epistemic and aleatoric [494]. Epistemic uncertainty describes uncertainty about the
model, its structure, or its parameters. This uncertainty is caused by insu�cient training data or by a
di�erence in the training set and testing set distributions, so it vanishes in the limit of in�nite data. On
the other hand, aleatoric uncertainty describes uncertainty inherent in the observations. This
uncertainty is due to noisy or missing data, so it vanishes with the ability to observe all independent
variables with in�nite precision. A good way to represent aleatoric uncertainty is to design an
appropriate loss function with an uncertainty variable. In the case of data-dependent aleatoric
uncertainty, one can train the model to increase its uncertainty when it is incorrect due to noisy or
missing data, and in the case of task-dependent aleatoric uncertainty, one can optimize for the best
uncertainty parameter for each task [495]. Meanwhile, there are various methods for modeling
epistemic uncertainty, outlined below.

In classi�cation tasks, con�dence calibration is the problem of using classi�er scores to predict class
membership probabilities that match the true membership likelihoods. These membership
probabilities can be used to assess the uncertainty associated with assigning the example to each of
the classes. Guo et al. [496] observed that contemporary neural networks are poorly calibrated and
provided a simple recommendation for calibration: temperature scaling, a single parameter special
case of Platt scaling [497]. In addition to con�dence calibration, there is early work from Chryssolouris
et al. [498] that described a method for obtaining con�dence intervals with the assumption of
normally distributed error for the neural network. More recently, Hendrycks and Gimpel discovered
that incorrect or out-of-distribution examples usually have lower maximum softmax probabilities than
correctly classi�ed examples, allowing for e�ective detection of misclassi�ed examples [499]. Liang et
al. used temperature scaling and small perturbations to further separate the softmax scores of



correctly classi�ed examples and the scores of out-of-distribution examples, allowing for more
e�ective detection [500]. This approach outperformed the baseline approaches by a large margin,
establishing a new state-of-the-art performance.

An alternative approach for obtaining principled uncertainty estimates from deep learning models is
to use Bayesian neural networks. Deep learning models are usually trained to obtain the most likely
parameters given the data. However, choosing the single most likely set of parameters ignores the
uncertainty about which set of parameters (among the possible models that explain the given dataset)
should be used. This sometimes leads to uncertainty in predictions when the chosen likely
parameters produce high-con�dence but incorrect results. On the other hand, the parameters of
Bayesian neural networks are modeled as full probability distributions. This Bayesian approach comes
with a whole host of bene�ts, including better calibrated con�dence estimates [501] and more
robustness to adversarial and out-of-distribution examples [502]. Unfortunately, modeling the full
posterior distribution for the model’s parameters given the data is usually computationally
intractable. One popular method for circumventing this high computational cost is called test-time
dropout [503], where an approximate posterior distribution is obtained using variational inference.
Gal and Ghahramani showed that a stack of fully connected layers with dropout between the layers is
equivalent to approximate inference in a Gaussian process model [503]. The authors interpret
dropout as a variational inference method and apply their method to convolutional neural networks.
This is simple to implement and preserves the possibility of obtaining cheap samples from the
approximate posterior distribution. Operationally, obtaining model uncertainty for a given case
becomes as straightforward as leaving dropout turned on and predicting multiple times. The spread
of the di�erent predictions is a reasonable proxy for model uncertainty. This technique has been
successfully applied in an automated system for detecting diabetic retinopathy [504], where
uncertainty-informed referrals improved diagnostic performance and allowed the model to meet the
National Health Service recommended levels of sensitivity and speci�city. The authors also found that
entropy performs comparably to the spread obtained via test-time dropout for identifying uncertain
cases, and therefore it can be used instead for automated referrals.

Several other techniques have been proposed for e�ectively estimating predictive uncertainty as
uncertainty quanti�cation for neural networks continues to be an active research area. Recently,
McClure and Kriegeskorte observed that test-time sampling improved calibration of the probabilistic
predictions, sampling weights led to more robust uncertainty estimates than sampling units, and
spike-and-slab sampling was superior to Gaussian dropconnect and Bernoulli dropout [505]. Krueger
et al. introduced Bayesian hypernetworks [506] as another framework for approximate Bayesian
inference in deep learning, where an invertible generative hypernetwork maps isotropic Gaussian
noise to parameters of the primary network allowing for computationally cheap sampling and e�cient
estimation of the posterior. Meanwhile, Lakshminarayanan et al. proposed using deep ensembles,
which are traditionally used for boosting predictive performance, on standard (non-Bayesian) neural
networks to obtain well-calibrated uncertainty estimates that are comparable to those obtained by
Bayesian neural networks [507]. In cases where model uncertainty is known to be caused by a
di�erence in training and testing distributions, domain adaptation-based techniques can help mitigate
the problem [267].

Despite the success and popularity of deep learning, some deep learning models can be surprisingly
brittle. Researchers are actively working on modi�cations to deep learning frameworks to enable
them to handle probability and embrace uncertainty. Most notably, Bayesian modeling and deep
learning are being integrated with renewed enthusiasm. As a result, several opportunities for
innovation arise: understanding the causes of model uncertainty can lead to novel optimization and
regularization techniques, assessing the utility of uncertainty estimation techniques on various model
architectures and structures can be very useful to practitioners, and extending Bayesian deep learning
to unsupervised settings can be a signi�cant breakthrough [508]. Unfortunately, uncertainty
quanti�cation techniques are underutilized in the computational biology communities and largely



ignored in the current deep learning for biomedicine literature. Thus, the practical value of
uncertainty quanti�cation in biomedical domains is yet to be appreciated.

Interpretation

As deep learning models achieve state-of-the-art performance in a variety of domains, there is a
growing need to make the models more interpretable. Interpretability matters for two main reasons.
First, a model that achieves breakthrough performance may have identi�ed patterns in the data that
practitioners in the �eld would like to understand. However, this would not be possible if the model is
a black box. Second, interpretability is important for trust. If a model is making medical diagnoses, it is
important to ensure the model is making decisions for reliable reasons and is not focusing on an
artifact of the data. A motivating example of this can be found in Caruana et al. [509], where a model
trained to predict the likelihood of death from pneumonia assigned lower risk to patients with
asthma, but only because such patients were treated as higher priority by the hospital. In the context
of deep learning, understanding the basis of a model’s output is particularly important as deep
learning models are unusually susceptible to adversarial examples [510] and can output con�dence
scores over 99.99% for samples that resemble pure noise.

As the concept of interpretability is quite broad, many methods described as improving the
interpretability of deep learning models take disparate and often complementary approaches.

Assigning example-speci�c importance scores

Several approaches ascribe importance on an example-speci�c basis to the parts of the input that are
responsible for a particular output. These can be broadly divided into perturbation-based approaches
and backpropagation-based approaches.

Perturbation-based approaches change parts of the input and observe the impact on the output of
the network. Alipanahi et al. [250] and Zhou & Troyanskaya [258] scored genomic sequences by
introducing virtual mutations at individual positions in the sequence and quantifying the change in the
output. Umarov et al. [271] used a similar strategy, but with sliding windows where the sequence
within each sliding window was substituted with a random sequence. Kelley et al. [276] inserted
known protein-binding motifs into the centers of sequences and assessed the change in predicted
accessibility. Ribeiro et al. [511] introduced LIME, which constructs a linear model to locally
approximate the output of the network on perturbed versions of the input and assigns importance
scores accordingly. For analyzing images, Zeiler and Fergus [512] applied constant-value masks to
di�erent input patches. More recently, marginalizing over the plausible values of an input has been
suggested as a way to more accurately estimate contributions [513].

A common drawback to perturbation-based approaches is computational e�ciency: each perturbed
version of an input requires a separate forward propagation through the network to compute the
output. As noted by Shrikumar et al. [268], such methods may also underestimate the impact of
features that have saturated their contribution to the output, as can happen when multiple redundant
features are present. To reduce the computational overhead of perturbation-based approaches, Fong
and Vedaldi [514] solve an optimization problem using gradient descent to discover a minimal subset
of inputs to perturb in order to decrease the predicted probability of a selected class. Their method
converges in many fewer iterations but requires the perturbation to have a di�erentiable form.

Backpropagation-based methods, in which the signal from a target output neuron is propagated
backwards to the input layer, are another way to interpret deep networks that sidestep ine�ciencies
of the perturbation-based methods. A classic example of this is calculating the gradients of the output
with respect to the input [515] to compute a “saliency map”. Bach et al. [516] proposed a strategy



called Layerwise Relevance Propagation, which was shown to be equivalent to the element-wise
product of the gradient and input [268,517]. Networks with Recti�ed Linear Units (ReLUs) create
nonlinearities that must be addressed. Several variants exist for handling this [512,518].
Backpropagation-based methods are a highly active area of research. Researchers are still actively
identifying weaknesses [519], and new methods are being developed to address them [520,521,268].
Lundberg and Lee [522] noted that several importance scoring methods including integrated
gradients and LIME could all be considered approximations to Shapely values [523], which have a long
history in game theory for assigning contributions to players in cooperative games.

Matching or exaggerating the hidden representation

Another approach to understanding the network’s predictions is to �nd arti�cial inputs that produce
similar hidden representations to a chosen example. This can elucidate the features that the network
uses for prediction and drop the features that the network is insensitive to. In the context of natural
images, Mahendran and Vedaldi [524] introduced the “inversion” visualization, which uses gradient
descent and backpropagation to reconstruct the input from its hidden representation. The method
required placing a prior on the input to favor results that resemble natural images. For genomic
sequence, Finnegan and Song [525] used a Markov chain Monte Carlo algorithm to �nd the
maximum-entropy distribution of inputs that produced a similar hidden representation to the chosen
input.

A related idea is “caricaturization”, where an initial image is altered to exaggerate patterns that the
network searches for [526]. This is done by maximizing the response of neurons that are active in the
network, subject to some regularizing constraints. Mordvintsev et al. [527] leveraged caricaturization
to generate aesthetically pleasing images using neural networks.

Activation maximization

Activation maximization can reveal patterns detected by an individual neuron in the network by
generating images which maximally activate that neuron, subject to some regularizing constraints.
This technique was �rst introduced in Ehran et al. [528] and applied in subsequent work
[515,526,527,529]. Lanchantin et al. [253] applied class-based activation maximization to genomic
sequence data. One drawback of this approach is that neural networks often learn highly distributed
representations where several neurons cooperatively describe a pattern of interest. Thus, visualizing
patterns learned by individual neurons may not always be informative.

RNN-speci�c approaches

Several interpretation methods are speci�cally tailored to recurrent neural network architectures. The
most common form of interpretability provided by RNNs is through attention mechanisms, which
have been used in diverse problems such as image captioning and machine translation to select
portions of the input to focus on generating a particular output [530,531]. Deming et al. [532] applied
the attention mechanism to models trained on genomic sequence. Attention mechanisms provide
insight into the model’s decision-making process by revealing which portions of the input are used by
di�erent outputs. Singh et al. used a hierarchy of attention layers to locate important genome
positions and signals for predicting gene expression from histone modi�cations [186]. In the clinical
domain, Choi et al. [533] leveraged attention mechanisms to highlight which aspects of a patient’s
medical history were most relevant for making diagnoses. Choi et al. [534] later extended this work to
take into account the structure of disease ontologies and found that the concepts represented by the
model aligned with medical knowledge. Note that interpretation strategies that rely on an attention
mechanism do not provide insight into the logic used by the attention layer.



Visualizing the activation patterns of the hidden state of a recurrent neural network can also be
instructive. Early work by Ghosh and Karamcheti [535] used cluster analysis to study hidden states of
comparatively small networks trained to recognize strings from a �nite state machine. More recently,
Karpathy et al. [536] showed the existence of individual cells in LSTMs that kept track of quotes and
brackets in character-level language models. To facilitate such analyses, LSTMVis [537] allows
interactive exploration of the hidden state of LSTMs on di�erent inputs.

Another strategy, adopted by Lanchatin et al. [253] looks at how the output of a recurrent neural
network changes as longer and longer subsequences are supplied as input to the network, where the
subsequences begin with just the �rst position and end with the entire sequence. In a binary
classi�cation task, this can identify those positions which are responsible for �ipping the output of the
network from negative to positive. If the RNN is bidirectional, the same process can be repeated on
the reverse sequence. As noted by the authors, this approach was less e�ective at identifying motifs
compared to the gradient-based backpropagation approach of Simonyan et al. [515], illustrating the
need for more sophisticated strategies to assign importance scores in recurrent neural networks.

Murdoch and Szlam [538] showed that the output of an LSTM can be decomposed into a product of
factors, where each factor can be interpreted as the contribution at a particular timestep. The
contribution scores were then used to identify key phrases from a model trained for sentiment
analysis and obtained superior results compared to scores derived via a gradient-based approach.

Latent space manipulation

Interpretation of embedded or latent space features learned through generative unsupervised
models can reveal underlying patterns otherwise masked in the original input. Embedded feature
interpretation has been emphasized mostly in image and text based applications [105,539], but
applications to genomic and biomedical domains are increasing.

For example, Way and Greene trained a VAE on gene expression from The Cancer Genome Atlas
(TCGA) [540] and use latent space arithmetic to rapidly isolate and interpret gene expression features
descriptive of high grade serous ovarian cancer subtypes [541]. The most di�erentiating VAE features
were representative of biological processes that are known to distinguish the subtypes. Latent space
arithmetic with features derived using other compression algorithms were not as informative in this
context [542]. Embedding discrete chemical structures with autoencoders and interpreting the
learned continuous representations with latent space arithmetic has also facilitated predicting drug-
like compounds [448]. Furthermore, embedding biomedical text into lower dimensional latent spaces
have improved name entity recognition in a variety of tasks including annotating clinical
abbreviations, genes, cell lines, and drug names [78,79,80,81].

Other approaches have used interpolation through latent space embeddings learned by GANs to
interpret unobserved intermediate states. For example, Osokin et al. trained GANs on two-channel
�uorescent microscopy images to interpret intermediate states of protein localization in yeast cells
[543]. Goldsborough et al. trained a GAN on �uorescent microscopy images and used latent space
interpolation and arithmetic to reveal underlying responses to small molecule perturbations in cell
lines [544].

Miscellaneous approaches

It can often be informative to understand how the training data a�ects model learning. Toward this
end, Koh and Liang [545] used in�uence functions, a technique from robust statistics, to trace a
model’s predictions back through the learning algorithm to identify the datapoints in the training set
that had the most impact on a given prediction. A more free-form approach to interpretability is to
visualize the activation patterns of the network on individual inputs and on subsets of the data. ActiVis



and CNNvis [546,547] are two frameworks that enable interactive visualization and exploration of
large-scale deep learning models. An orthogonal strategy is to use a knowledge distillation approach
to replace a deep learning model with a more interpretable model that achieves comparable
performance. Towards this end, Che et al. [548] used gradient boosted trees to learn interpretable
healthcare features from trained deep models.

Finally, it is sometimes possible to train the model to provide justi�cations for its predictions. Lei et
al. [549] used a generator to identify “rationales”, which are short and coherent pieces of the input
text that produce similar results to the whole input when passed through an encoder. The authors
applied their approach to a sentiment analysis task and obtained substantially superior results
compared to an attention-based method.

Future outlook

While deep learning lags behind most Bayesian models in terms of interpretability, the interpretability
of deep learning is comparable to or exceeds that of many other widely-used machine learning
methods such as random forests or SVMs. While it is possible to obtain importance scores for
di�erent inputs in a random forest, the same is true for deep learning. Similarly, SVMs trained with a
nonlinear kernel are not easily interpretable because the use of the kernel means that one does not
obtain an explicit weight matrix. Finally, it is worth noting that some simple machine learning methods
are less interpretable in practice than one might expect. A linear model trained on heavily engineered
features might be di�cult to interpret as the input features themselves are di�cult to interpret.
Similarly, a decision tree with many nodes and branches may also be di�cult for a human to make
sense of.

There are several directions that might bene�t the development of interpretability techniques. The
�rst is the introduction of gold standard benchmarks that di�erent interpretability approaches could
be compared against, similar in spirit to how the ImageNet [46] and CIFAR [550] datasets spurred the
development of deep learning for computer vision. It would also be helpful if the community placed
more emphasis on domains outside of computer vision. Computer vision is often used as the example
application of interpretability methods, but it is not the domain with the most pressing need. Finally,
closer integration of interpretability approaches with popular deep learning frameworks would make
it easier for practitioners to apply and experiment with di�erent approaches to understanding their
deep learning models.

Data limitations

A lack of large-scale, high-quality, correctly labeled training data has impacted deep learning in nearly
all applications we have discussed. The challenges of training complex, high-parameter neural
networks from few examples are obvious, but uncertainty in the labels of those examples can be just
as problematic. In genomics labeled data may be derived from an experimental assay with known and
unknown technical artifacts, biases, and error pro�les. It is possible to weight training examples or
construct Bayesian models to account for uncertainty or non-independence in the data, as described
in the TF binding example above. As another example, Park et al. [551] estimated shared non-
biological signal between datasets to correct for non-independence related to assay platform or other
factors in a Bayesian integration of many datasets. However, such techniques are rarely placed front
and center in any description of methods and may be easily overlooked.

For some types of data, especially images, it is straightforward to augment training datasets by
splitting a single labeled example into multiple examples. For example, an image can easily be
rotated, �ipped, or translated and retain its label [43]. 3D MRI and 4D fMRI (with time as a dimension)
data can be decomposed into sets of 2D images [552]. This can greatly expand the number of training
examples but arti�cially treats such derived images as independent instances and sacri�ces the



structure inherent in the data. CellCnn trains a model to recognize rare cell populations in single-cell
data by creating training instances that consist of subsets of cells that are randomly sampled with
replacement from the full dataset [346].

Simulated or semi-synthetic training data has been employed in multiple biomedical domains, though
many of these ideas are not speci�c to deep learning. Training and evaluating on simulated data, for
instance, generating synthetic TF binding sites with position weight matrices [256] or RNA-seq reads
for predicting mRNA transcript boundaries [553], is a standard practice in bioinformatics. This
strategy can help benchmark algorithms when the available gold standard dataset is imperfect, but it
should be paired with an evaluation on real data, as in the prior examples [256,553]. In rare cases,
models trained on simulated data have been successfully applied directly to real data [553].

Data can be simulated to create negative examples when only positive training instances are
available. DANN [35] adopts this approach to predict the pathogenicity of genetic variants using semi-
synthetic training data from Combined Annotation-Dependent Depletion (CADD) [554]. Though our
emphasis here is on the training strategy, it should be noted that logistic regression outperformed
DANN when distinguishing known pathogenic mutations from likely benign variants in real data.
Similarly, a somatic mutation caller has been trained by injecting mutations into real sequencing
datasets [390,391].

In settings where the experimental observations are biased toward positive instances, such as MHC
protein and peptide ligand binding a�nity [320], or the negative instances vastly outnumber the
positives, such as high-throughput chemical screening [445], training datasets have been augmented
by adding additional instances and assuming they are negative. There is some evidence that this can
improve performance [445], but in other cases it was only bene�cial when the real training datasets
were extremely small [320]. Overall, training with simulated and semi-simulated data is a valuable
idea for overcoming limited sample sizes but one that requires more rigorous evaluation on real
ground-truth datasets before we can recommend it for widespread use. There is a risk that a model
will easily discriminate synthetic examples but not generalize to real data.

Multimodal, multi-task, and transfer learning, discussed in detail below, can also combat data
limitations to some degree. There are also emerging network architectures, such as Diet Networks for
high-dimensional SNP data [555]. These use multiple networks to drastically reduce the number of
free parameters by �rst �ipping the problem and training a network to predict parameters (weights)
for each input (SNP) to learn a feature embedding. This embedding (e.g. from principal component
analysis, per class histograms, or a word2vec [105] generalization) can be learned directly from input
data or take advantage of other datasets or domain knowledge. Additionally, in this task the features
are the examples, an important advantage when it is typical to have 500 thousand or more SNPs and
only a few thousand patients. Finally, this embedding is of a much lower dimension, allowing for a
large reduction in the number of free parameters. In the example given, the number of free
parameters was reduced from 30 million to 50 thousand, a factor of 600.

Hardware limitations and scaling

E�ciently scaling deep learning is challenging, and there is a high computational cost (e.g. time,
memory, and energy) associated with training neural networks and using them to make predictions.
This is one of the reasons why neural networks have only recently found widespread use [556].

Many have sought to curb these costs, with methods ranging from the very applied (e.g. reduced
numerical precision [557,558,559,560]) to the exotic and theoretic (e.g. training small networks to
mimic large networks and ensembles [561,562]). The largest gains in e�ciency have come from
computation with GPUs [556,563,564,565,566,567], which excel at the matrix and vector operations
so central to deep learning. The massively parallel nature of GPUs allows additional optimizations,



such as accelerated mini-batch gradient descent [564,565,568,569]. However, GPUs also have limited
memory, making networks of useful size and complexity di�cult to implement on a single GPU or
machine [68,563]. This restriction has sometimes forced computational biologists to use
workarounds or limit the size of an analysis. Chen et al. [184] inferred the expression level of all genes
with a single neural network, but due to memory restrictions they randomly partitioned genes into
two separately analyzed halves. In other cases, researchers limited the size of their neural network
[29] or the total number of training instances [448]. Some have also chosen to use standard central
processing unit (CPU) implementations rather than sacri�ce network size or performance [570].

While steady improvements in GPU hardware may alleviate this issue, it is unclear whether advances
will occur quickly enough to keep pace with the growing biological datasets and increasingly complex
neural networks. Much has been done to minimize the memory requirements of neural networks
[557,558,559,560,561,571,572], but there is also growing interest in specialized hardware, such as
�eld-programmable gate arrays (FPGAs) [567,573] and application-speci�c integrated circuits (ASICs)
[574]. Less software is available for such highly specialized hardware [573]. But specialized hardware
promises improvements in deep learning at reduced time, energy, and memory [567]. Specialized
hardware may be a di�cult investment for those not solely interested in deep learning, but for those
with a deep learning focus these solutions may become popular.

Distributed computing is a general solution to intense computational requirements and has enabled
many large-scale deep learning e�orts. Some types of distributed computation [575,576] are not
suitable for deep learning [577], but much progress has been made. There now exist a number of
algorithms [559,577], tools [578,579,580], and high-level libraries [581,582] for deep learning in a
distributed environment, and it is possible to train very complex networks with limited infrastructure
[583]. Besides handling very large networks, distributed or parallelized approaches o�er other
advantages, such as improved ensembling [584] or accelerated hyperparameter optimization
[585,586].

Cloud computing, which has already seen wide adoption in genomics [587], could facilitate easier
sharing of the large datasets common to biology [588,589], and may be key to scaling deep learning.
Cloud computing a�ords researchers �exibility, and enables the use of specialized hardware
(e.g. FPGAs, ASICs, GPUs) without major investment. As such, it could be easier to address the
di�erent challenges associated with the multitudinous layers and architectures available [590].
Though many are reluctant to store sensitive data (e.g. patient electronic health records) in the cloud,
secure, regulation-compliant cloud services do exist [591].

Data, code, and model sharing

A robust culture of data, code, and model sharing would speed advances in this domain. The cultural
barriers to data sharing in particular are perhaps best captured by the use of the term “research
parasite” to describe scientists who use data from other researchers [592]. A �eld that honors only
discoveries and not the hard work of generating useful data will have di�culty encouraging scientists
to share their hard-won data. It’s precisely those data that would help to power deep learning in the
domain. E�orts are underway to recognize those who promote an ecosystem of rigorous sharing and
analysis [593].

The sharing of high-quality, labeled datasets will be especially valuable. In addition, researchers who
invest time to preprocess datasets to be suitable for deep learning can make the preprocessing code
(e.g. Basset [276] and variationanalysis [388]) and cleaned data (e.g. MoleculeNet [457]) publicly
available to catalyze further research. However, there are complex privacy and legal issues involved in
sharing patient data that cannot be ignored. Solving these issues will require increased understanding
of privacy risks and standards specifying acceptable levels. In some domains high-quality training data
has been generated privately, i.e. high-throughput chemical screening data at pharmaceutical



companies. One perspective is that there is little expectation or incentive for this private data to be
shared. However, data are not inherently valuable. Instead, the insights that we glean from them are
where the value lies. Private companies may establish a competitive advantage by releasing data
su�cient for improved methods to be developed. Recently, Ramsundar et al. did this with an open
source platform DeepChem, where they released four privately generated datasets [594].

Code sharing and open source licensing is essential for continued progress in this domain. We
strongly advocate following established best practices for sharing source code, archiving code in
repositories that generate digital object identi�ers, and open licensing [595] regardless of the minimal
requirements, or lack thereof, set by journals, conferences, or preprint servers. In addition, it is
important for authors to share not only code for their core models but also scripts and code used for
data cleaning (see above) and hyperparameter optimization. These improve reproducibility and serve
as documentation of the detailed decisions that impact model performance but may not be
exhaustively captured in a manuscript’s methods text.

Because many deep learning models are often built using one of several popular software
frameworks, it is also possible to directly share trained predictive models. The availability of pre-
trained models can accelerate research, with image classi�ers as an apt example. A pre-trained neural
network can be quickly �ne-tuned on new data and used in transfer learning, as discussed below.
Taking this idea to the extreme, genomic data has been arti�cially encoded as images in order to
bene�t from pre-trained image classi�ers [386]. “Model zoos”—collections of pre-trained models—are
not yet common in biomedical domains but have started to appear in genomics applications
[211,596]. However, it is important to note that sharing models trained on individual data requires
great care because deep learning models can be attacked to identify examples used in training. One
possible solution to protect individual samples includes training models under di�erential privacy
[155], which has been used in the biomedical domain [158]. We discussed this issue as well as recent
techniques to mitigate these concerns in the patient categorization section.

DeepChem [453,457,459] and DragoNN (Deep RegulAtory GenOmic Neural Networks) [596]
exemplify the bene�ts of sharing pre-trained models and code under an open source license.
DeepChem, which targets drug discovery and quantum chemistry, has actively encouraged and
received community contributions of learning algorithms and benchmarking datasets. As a
consequence, it now supports a large suite of machine learning approaches, both deep learning and
competing strategies, that can be run on diverse test cases. This realistic, continual evaluation will play
a critical role in assessing which techniques are most promising for chemical screening and drug
discovery. Like formal, organized challenges such as the ENCODE-DREAM in vivo Transcription Factor
Binding Site Prediction Challenge [262], DeepChem provides a forum for the fair, critical evaluations
that are not always conducted in individual methodological papers, which can be biased toward
favoring a new proposed algorithm. Likewise DragoNN o�ers not only code and a model zoo but also
a detailed tutorial and partner package for simulating training data. These resources, especially the
ability to simulate datasets that are su�ciently complex to demonstrate the challenges of training
neural networks but small enough to train quickly on a CPU, are important for training students and
attracting machine learning researchers to problems in genomics and healthcare.

Multimodal, multi-task, and transfer learning

The fact that biomedical datasets often contain a limited number of instances or labels can cause
poor performance of deep learning algorithms. These models are particularly prone to over�tting due
to their high representational power. However, transfer learning techniques, also known as domain
adaptation, enable transfer of extracted patterns between di�erent datasets and even domains. This
approach consists of training a model for the base task and subsequently reusing the trained model
for the target problem. The �rst step allows a model to take advantage of a larger amount of data
and/or labels to extract better feature representations. Transferring learned features in deep neural



networks improves performance compared to randomly initialized features even when pre-training
and target sets are dissimilar. However, transferability of features decreases as the distance between
the base task and target task increases [597].

In image analysis, previous examples of deep transfer learning applications proved large-scale natural
image sets [46] to be useful for pre-training models that serve as generic feature extractors for
various types of biological images [15,333,598,599]. More recently, deep learning models predicted
protein sub-cellular localization for proteins not originally present in a training set [600]. Moreover,
learned features performed reasonably well even when applied to images obtained using di�erent
�uorescent labels, imaging techniques, and di�erent cell types [601]. However, there are no
established theoretical guarantees for feature transferability between distant domains such as natural
images and various modalities of biological imaging. Because learned patterns are represented in
deep neural networks in a layer-wise hierarchical fashion, this issue is usually addressed by �xing an
empirically chosen number of layers that preserve generic characteristics of both training and target
datasets. The model is then �ne-tuned by re-training top layers on the speci�c dataset in order to re-
learn domain-speci�c high level concepts (e.g. �ne-tuning for radiology image classi�cation [58]). Fine-
tuning on speci�c biological datasets enables more focused predictions.

In genomics, the Basset package [276] for predicting chromatin accessibility was shown to rapidly
learn and accurately predict on new data by leveraging a model pre-trained on available public data.
To simulate this scenario, authors put aside 15 of 164 cell type datasets and trained the Basset model
on the remaining 149 datasets. Then, they �ne-tuned the model with one training pass of each of the
remaining datasets and achieved results close to the model trained on all 164 datasets together. In
another example, Min et al. [277] demonstrated how training on the experimentally-validated
FANTOM5 permissive enhancer dataset followed by �ne-tuning on ENCODE enhancer datasets
improved cell type-speci�c predictions, outperforming state-of-the-art results. In drug design, general
RNN models trained to generate molecules from the ChEMBL database have been �ne-tuned to
produce drug-like compounds for speci�c targets [473,476].

Related to transfer learning, multimodal learning assumes simultaneous learning from various types
of inputs, such as images and text. It can capture features that describe common concepts across
input modalities. Generative graphical models like RBMs, deep Boltzmann machines, and DBNs,
demonstrate successful extraction of more informative features for one modality (images or video)
when jointly learned with other modalities (audio or text) [602]. Deep graphical models such as DBNs
are well-suited for multimodal learning tasks because they learn a joint probability distribution from
inputs. They can be pre-trained in an unsupervised fashion on large unlabeled data and then �ne-
tuned on a smaller number of labeled examples. When labels are available, convolutional neural
networks are ubiquitously used because they can be trained end-to-end with backpropagation and
demonstrate state-of-the-art performance in many discriminative tasks [15].

Jha et al. [239] showed that integrated training delivered better performance than individual
networks. They compared a number of feed-forward architectures trained on RNA-seq data with and
without an additional set of CLIP-seq, knockdown, and over-expression based input features. The
integrative deep model generalized well for combined data, o�ering a large performance
improvement for alternative splicing event estimation. Chaudhary et al. [603] trained a deep
autoencoder model jointly on RNA-seq, miRNA-seq, and methylation data from TCGA to predict
survival subgroups of hepatocellular carcinoma patients. This multimodal approach that treated
di�erent omic data types as di�erent modalities outperformed both traditional methods (principal
component analysis) and single-omic models. Interestingly, multi-omic model performance did not
improve when combined with clinical information, suggesting that the model was able to capture
redundant contributions of clinical features through their correlated genomic features. Chen et
al. [179] used deep belief networks to learn phosphorylation states of a common set of signaling
proteins in primary cultured bronchial cells collected from rats and humans treated with distinct



stimuli. By interpreting species as di�erent modalities representing similar high-level concepts, they
showed that DBNs were able to capture cross-species representation of signaling mechanisms in
response to a common stimuli. Another application used DBNs for joint unsupervised feature learning
from cancer datasets containing gene expression, DNA methylation, and miRNA expression data
[187]. This approach allowed for the capture of intrinsic relationships in di�erent modalities and for
better clustering performance over conventional k-means.

Multimodal learning with CNNs is usually implemented as a collection of individual networks in which
each learns representations from single data type. These individual representations are further
concatenated before or within fully-connected layers. FIDDLE [604] is an example of a multimodal
CNN that represents an ensemble of individual networks that take NET-seq, MNase-seq, ChIP-seq,
RNA-seq, and raw DNA sequence as input to predict transcription start sites. The combined model
radically improves performance over separately trained datatype-speci�c networks, suggesting that it
learns the synergistic relationship between datasets.

Multi-task learning is an approach related to transfer learning. In a multi-task learning framework, a
model learns a number of tasks simultaneously such that features are shared across them. DeepSEA
[258] implemented multi-task joint learning of diverse chromatin factors from raw DNA sequence.
This allowed a sequence feature that was e�ective in recognizing binding of a speci�c TF to be
simultaneously used by another predictor for a physically interacting TF. Similarly, TFImpute [240]
learned information shared across transcription factors and cell lines to predict cell-speci�c TF binding
for TF-cell line combinations. Yoon et al. [104] demonstrated that predicting the primary cancer site
from cancer pathology reports together with its laterality substantially improved the performance for
the latter task, indicating that multi-task learning can e�ectively leverage the commonality between
two tasks using a shared representation. Many studies employed multi-task learning to predict
chemical bioactivity [437,441] and drug toxicity [442,605]. Kearnes et al. [435] systematically
compared single-task and multi-task models for ADMET properties and found that multi-task learning
generally improved performance. Smaller datasets tended to bene�t more than larger datasets.

Multi-task learning is complementary to multimodal and transfer learning. All three techniques can be
used together in the same model. For example, Zhang et al. [598] combined deep model-based
transfer and multi-task learning for cross-domain image annotation. One could imagine extending
that approach to multimodal inputs as well. A common characteristic of these methods is better
generalization of extracted features at various hierarchical levels of abstraction, which is attained by
leveraging relationships between various inputs and task objectives.

Despite demonstrated improvements, transfer learning approaches pose challenges. There are no
theoretically sound principles for pre-training and �ne-tuning. Best practice recommendations are
heuristic and must account for additional hyper-parameters that depend on speci�c deep
architectures, sizes of the pre-training and target datasets, and similarity of domains. However,
similarity of datasets and domains in transfer learning and relatedness of tasks in multi-task learning
are di�cult to access. Most studies address these limitations by empirical evaluation of the model.
Unfortunately, negative results are typically not reported. A deep CNN trained on natural images
boosts performance in radiographic images [58]. However, due to di�erences in imaging domains,
the target task required either re-training the initial model from scratch with special pre-processing or
�ne-tuning of the whole network on radiographs with heavy data augmentation to avoid over�tting.
Exclusively �ne-tuning top layers led to much lower validation accuracy (81.4 versus 99.5). Fine-tuning
the aforementioned Basset model with more than one pass resulted in over�tting [276]. DeepChem
successfully improved results for low-data drug discovery with one-shot learning for related tasks.
However, it clearly demonstrated the limitations of cross-task generalization across unrelated tasks in
one-shot models, speci�cally nuclear receptor assays and patient adverse reactions [453].



In the medical domain, multimodal, multi-task and transfer learning strategies not only inherit most
methodological issues from natural image, text, and audio domains, but also pose domain-speci�c
challenges. There is a compelling need for the development of privacy-preserving transfer learning
algorithms, such as Private Aggregation of Teacher Ensembles [161]. We suggest that these types of
models deserve deeper investigation to establish sound theoretical guarantees and determine limits
for the transferability of features between various closely related and distant learning tasks.

Conclusions

Deep learning-based methods now match or surpass the previous state of the art in a diverse array of
tasks in patient and disease categorization, fundamental biological study, genomics, and treatment
development. Returning to our central question: given this rapid progress, has deep learning
transformed the study of human disease? Though the answer is highly dependent on the speci�c
domain and problem being addressed, we conclude that deep learning has not yet realized its
transformative potential or induced a strategic in�ection point. Despite its dominance over competing
machine learning approaches in many of the areas reviewed here and quantitative improvements in
predictive performance, deep learning has not yet de�nitively “solved” these problems.

As an analogy, consider recent progress in conversational speech recognition. Since 2009 there have
been drastic performance improvements with error rates dropping from more than 20% to less than
6% [606] and �nally approaching or exceeding human performance in the past year [607,608]. The
phenomenal improvements on benchmark datasets are undeniable, but greatly reducing the error
rate on these benchmarks did not fundamentally transform the domain. Widespread adoption of
conversational speech technologies will require solving the problem, i.e. methods that surpass human
performance, and persuading users to adopt them [606]. We see parallels in healthcare, where
achieving the full potential of deep learning will require outstanding predictive performance as well as
acceptance and adoption by biologists and clinicians. These experts will rightfully demand rigorous
evidence that deep learning has impacted their respective disciplines—elucidated new biological
mechanisms and improved patient outcomes—to be convinced that the promises of deep learning
are more substantive than those of previous generations of arti�cial intelligence.

Some of the areas we have discussed are closer to surpassing this lofty bar than others, generally
those that are more similar to the non-biomedical tasks that are now monopolized by deep learning.
In medical imaging, diabetic retinopathy [50], diabetic macular edema [50], tuberculosis [59], and
skin lesion [5] classi�ers are highly accurate and comparable to clinician performance.

In other domains, perfect accuracy will not be required because deep learning will primarily prioritize
experiments and assist discovery. For example, in chemical screening for drug discovery, a deep
learning system that successfully identi�es dozens or hundreds of target-speci�c, active small
molecules from a massive search space would have immense practical value even if its overall
precision is modest. In medical imaging, deep learning can point an expert to the most challenging
cases that require manual review [59], though the risk of false negatives must be addressed. In
protein structure prediction, errors in individual residue-residue contacts can be tolerated when using
the contacts jointly for 3D structure modeling. Improved contact map predictions [29] have led to
notable improvements in fold and 3D structure prediction for some of the most challenging proteins,
such as membrane proteins [299].

Conversely, the most challenging tasks may be those in which predictions are used directly for
downstream modeling or decision-making, especially in the clinic. As an example, errors in sequence
variant calling will be ampli�ed if they are used directly for GWAS. In addition, the stochasticity and
complexity of biological systems implies that for some problems, for instance predicting gene
regulation in disease, perfect accuracy will be unattainable.



We are witnessing deep learning models achieving human-level performance across a number of
biomedical domains. However, machine learning algorithms, including deep neural networks, are also
prone to mistakes that humans are much less likely to make, such as misclassi�cation of adversarial
examples [609,610], a reminder that these algorithms do not understand the semantics of the
objects presented. It may be impossible to guarantee that a model is not susceptible to adversarial
examples, but work in this area is continuing [611,612]. Cooperation between human experts and
deep learning algorithms addresses many of these challenges and can achieve better performance
than either individually [65]. For sample and patient classi�cation tasks, we expect deep learning
methods to augment clinicians and biomedical researchers.

We are optimistic about the future of deep learning in biology and medicine. It is by no means
inevitable that deep learning will revolutionize these domains, but given how rapidly the �eld is
evolving, we are con�dent that its full potential in biomedicine has not been explored. We have
highlighted numerous challenges beyond improving training and predictive accuracy, such as
preserving patient privacy and interpreting models. Ongoing research has begun to address these
problems and shown that they are not insurmountable. Deep learning o�ers the �exibility to model
data in its most natural form, for example, longer DNA sequences instead of k-mers for transcription
factor binding prediction and molecular graphs instead of pre-computed bit vectors for drug
discovery. These �exible input feature representations have spurred creative modeling approaches
that would be infeasible with other machine learning techniques. Unsupervised methods are currently
less-developed than their supervised counterparts, but they may have the most potential because of
how expensive and time-consuming it is to label large amounts of biomedical data. If future deep
learning algorithms can summarize very large collections of input data into interpretable models that
spur scientists to ask questions that they did not know how to ask, it will be clear that deep learning
has transformed biology and medicine.

Methods

Continuous collaborative manuscript drafting

We recognized that deep learning in precision medicine is a rapidly developing area. Hence, diverse
expertise was required to provide a forward-looking perspective. Accordingly, we collaboratively wrote
this review in the open, enabling anyone with expertise to contribute. We wrote the manuscript in
markdown and tracked changes using git. Contributions were handled through GitHub, with
individuals submitting “pull requests” to suggest additions to the manuscript. This collaborative
writing approach was later generalized into Manubot [613].

Manubot supports citations of persistent identi�ers, such as DOIs, PubMed Central IDs, PubMed IDs,
arXiv IDs, and URLs. This reduces one major barrier to writing collaboratively, which is syncing
reference managers between participants. In addition, Manubot uses continuous integration to build
and deploy manuscripts. This allows for automated error checking of proposed changes to catch
malformated citations and invalid syntax. Originally, the Deep Review used Travis CI for continuous
integration, but in 2020 switched to GitHub Actions, which became the default for Manubot
manuscripts.

For version 1.0 of the Deep Review, author order was randomized as described in version 1.0 [614].
However, this was a one-time manual process. Starting with version 2.0, we began shu�ing authors
for every manuscript version. Manubot allowed us to automate this process, using the Git commit
hash as a random seed to ensure reproducible ordering.

Author contributions

https://manubot.org/


Version 2.0

We continued using the open repository on the GitHub version control platform ( greenelab/deep-
review ) [615], which was established to write the version 1.0 manuscript.

Drafted one or more subsections: Brock C. Christensen, Alexander J. Titus, Joshua J. Levy.

Drafted sub-sections, edited the manuscript, reviewed pull requests, and coordinated co-authors:
Anthony Gitter, Casey S. Greene.

Edited the manuscript, reviewed pull requests, and developed Manubot: Daniel S. Himmelstein.
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