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Abstract

We wrote an application for the Chan Zuckerberg Initiative’s Collaborative Computational Tools

RFA. Our application was recommended for funding. We are writing our progress report as we go.

This repository contains the report. Please feel free to file a GitHub Issue to ask a question. Some

elements of this report are expected to also be written up via a published manuscript. In the event

that we write a manuscript, we will begin from this report. Authorship will be determined in

accordance with ICMJE guidelines.

Introduction

Currently this contains text describing our project from our initial proposal.

The Human Cell Atlas (HCA) aims to provide a comprehensive map of all types of human cells.

Connecting that map to disease states, which will be key to the CZI’s mission of curing or

managing all diseases in the next eighty years, will require us to see how these cell types change

during aging, during disease processes, or in the presence of drugs. Ideally, we’d be able to apply

a transformation to the HCA’s reference map to predict and study these states.

Certain types of deep neural networks can generate hypothetical data by learning and decoding a

lower dimensional latent space. An ideal latent space enables arithmetic operations that use data

to produce realistic output for novel transformations. For example, FaceApp [1] can modify a

picture of an individual to produce an image of the subject at an older age, with a different

expression, or of a different gender.

The overall objective of this proposal is to determine how unsupervised deep neural network

models can best be trained on single cell expression data from the HCA and the extent to which

such models define biological latent spaces that capture disease states and targeted perturbations.

The rationale is that latent space arithmetic for single cell transcriptomes would enable researchers

to use predict how the expression of every gene would change in each HCA-identified cell type in

numerous conditions including after drug treatment, in the context of a specific genetic variant, with

a specific disease, or a combination of these and other factors.

Summary

Certain deep neural networks can generate hypothetical data by learning and decoding a lower

dimensional latent space. This latent space enables arithmetic operations that produce realistic

output for novel transformations. This allows users to generate hypothetical images [2] and to

interpolate protein localizations through the cell-cycle [3]. An accessible example of latent space

transformations comes from FaceApp [1], which modifies a picture of an individual to produce an

image of the subject at an older age, with a different expression, or of a different genders.

https://chanzuckerberg.com/wp-content/uploads/2017/03/RFA-Computational-Tools.pdf
https://chanzuckerberg.com/wp-content/uploads/2017/03/RFA-Computational-Tools.pdf
https://github.com/greenelab/czi-hca-report/issues
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
https://github.com/greenelab/czi-rfa/blob/master/proposal.md


Our overall objective is to determine how unsupervised deep neural network models can best be

trained on single cell expression data from the Human Cell Atlas (HCA) and the extent to which

such models define biological latent spaces that capture disease states and targeted perturbations.

The rationale is that latent space arithmetic for genomic data would enable researchers to predict

how the expression of every gene would change in each HCA-identified cell type after drug

treatment, in the context of a specific genetic variant, with a specific disease, or a combination of

these and other factors.

Prior Contributions / Preliminary Results

We previously developed neural-network based methods for unsupervised integration of

transcriptomic data [4]. We now build to Generative Adversarial Networks (GANs) and Variational

Autoencoders (VAEs) which have a track record of defining meaningful latent spaces for images.

We adapted GANs to generate realistic individuals under a differential privacy framework [7] and

built VAEs over bulk transcriptomic data with the goal of describing a biologically-relevant latent

space [8]. Here, we will apply these unsupervised deep learning methods to single cell

transcriptomic data and incorporate novel data augmentation approaches for genomics. We also

bring workflow automation experience to the HCA community [9].

Aim 1: Develop proof-of-concept unsupervised deep

learning methods for single cell transcriptomic data

from the HCA.

Proposed work

The objective of this aim is to implement and test approaches to build deep generative models,

such as VAEs [10] and GANs [11], from HCA single cell RNA-seq data.

Single cell data pose unique opportunities, but also challenges, for deep neural network

algorithms. Many cells are often assayed, and many observations are needed to use deep learning

effectively. However, transcript abundance estimates for each cell are generally subject to more

error than bulk samples.

In our experience with generative deep learning [7] it can be difficult to predict optimal parameters

in advance. We will perform a grid search over VAE architectures and hyperparameters to identify

suitable options. We will evaluate zero-inflated loss among more traditional loss functions, as Chris

Probert noted potential benefits on our proposal’s GitHub repository [12] [13] [14] [15]]. This

process will identify a subset of parameters and architectures that are worth exploring further for

single cells.



We will also develop data augmentation for single cell RNA-seq data, as no such approaches exist

yet for transcriptomes. To understand data augmentation, imagine scanned pathology slides. Each

slide may be prepared and scanned with a subtly different orientation or magnification. A deep

learning method may identify these measurement differences, or there may be too few slides to

train a good model. Applying arbitrary rotations, zooms, and other irrelevant transformations

increases the effective amount of training data and reduces the model’s propensity to learn such

noise.

We plan to use fast abundance estimates for RNA-seq [16] to perform data augmentation for

transcriptomes. Multiple resamples or subsamples of reads during transcript abundance estimation

can capture uncertainty in the data, akin to arbitrary rotations. Therefore, we plan to collaborate

with Rob Patro’s laboratory (Collaborative Network) to implement these and related approaches.

We posit that genomic data augmentation will improve latent feature generalization by separating

biological from technical features and increasing the effective sample size during training.

We will select high-quality models by choosing those that minimize both reconstruction loss and KL

divergence [10]. We will evaluate resulting models for their applicability to rheumatic disease and

their suitability for latent space arithmetic (see: Evaluation).

Results

VAE test on simulated single cell datasets

1. Simulation data generation:

Simulated single cell data was generated by splatter [18].

Parameters used: * nCells - The number of cells to simulate: 500 - 5000 * nGenes - The number of

genes to simulate: 20000 - 60000 * nGroups - The number of cell types: 5 - 15 * outlier - probability

of a gene that is an expression outlier: 0.1 - 0.5 * default parameter is ncells = 600, nGenes =

20000, cell types = 5, batchsize = 1

Simulation statistics under different parameters:



 

Figure 1: Distribution of mean expression level of simulated genes across samples under different

simulated parameters.

2. Visualization of simulated single cell data using VAE_depth2 (2 hidden layer),

VAE_depth1 (1 hidden layer), t-SNE and PCA under different parameters

To see if different methods can recover cell types, we compared the 2D visualizations on simulated

datasets. 2-layer VAE performs much better to differentiate different cell types when comparing

with 1-layer VAE. The performance of VAE and t-SNE is similar and much better than PCA, but

with the increase of outlier genes, 2-layer VAE is more resistant to noise.



 



Figure 2: 2 - layer VAE is more resistant to outlier. 2D visualization of simulated single cell data

from different outlier parameters ( 0 - 0.5).

3. Performance evaluation of different simulation parameters

Clustering performance was measured by normalized mutual information (NMI). NMI is an

normalization of the Mutual Information (MI, measures the dependence of two random variables). It

is a measurement to determine the quality of clustering, which is between 0 (no mutual information)

and 1 (perfect correlation).

 

Figure 3: Performance comparison among VAE, t-SNE and PCA under different simulation

parameters.



4. Model sensitivity

We found VAE model was sensitive to hyperparameter tuning, especially for deeper networks. The

performance of 3-layer VAE changed dramatically after parameter tuning. Our results should

discourage authors and reviewers from solely relying on empirical performance comparisons to

evaluate model performance. The details of these results are available in [19].

VAE performance on real single cell datasets

1. real single cell datasets:

To evaluate the performance of VAE and the other dimension reduction approaches, we selected 8

real single cell datasets with true cell type labels.



dataset ncells ngenes tissue organism
cell

types

Accesion

number
Platform

celltype

annotation

yan 90 20214
Embryo

Devel
human 6 GSE36552

Illumina

HiSeq

2000

from different

embryonic

developmental

time points

goolam 124 41428
Embryo

Devel
mouse 5

E-

MTAB-3321

from different

embryonic

developmental

time points

pollen 301 23730

Developing

Cerebral

Cortex

human 11 SRP041736

Illumina

HiSeq

2000

from different

celllines

patel 430 5948 Glioblastoma human 12 GSE57249

Illumina

HiSeq

2000

from five

primary

glioblastomas

nestorowa 1656 4773 Glioblastoma human 12 GSE81682

Illumina

HiSeq

2500

defined by

sorting

Petropoulos 1529 26178
Embryo

Devel
human 6

E-

MTAB-3929

Illumina

HiSeq

2000

defined by

developmental

stages

HCA

melanoma

data

6639 22489 Lymph node mouse 9
HCA

release

Smart-

seq2

baron-

human
8569 20125 Pancreas human 14 GSE84133

Illumina

HiSeq

2500

from

expression

profiles and

cell origin



2. 2-dimensional projection of real single cell data based on differnt structure of VAE:

VAE_depth3 (3 hidden layer), VAE_depth2 (2 hidden layer), VAE_depth1 (1 hidden layer), t-

SNE, ZIFA, UMAP and PCA

We tested the performance of VAE and another 4 methods (t-SNE [27], ZIFA [13], UMAP [28] and

PCA [30]) on these real datasets with different number of cells, genes and cell types. Figure 4

shows the 2-D visulization of the real single cell datasets. PCA and ZIFA generally perform better

when number of cells is small, but with the increase of number of cells, VAE better differentiates

different cell types. Increase of VAE depth does not significantly change the performance for real

single cell datasets, but for the simulated data we analyzed above, VAE with higher depth is more

resistant to noise and performs better with small number of cells.



 

Figure 4: 2D Visualization of real single cell data using VAE_depth3 (3 hidden layer), VAE_depth2

(2 hidden layer), VAE_depth1 (1 hidden layer), t-SNE, ZIFA, UMAP and PCA.

3. Performance evaluation

Evaluation of model performance is based on three different types of metrics: clustering based,

average silhouette score and knn-based.

Clustering based approach: k-means clustering was performed based on the latent space, the

model performance was measured by NMI and ARI.



 



Figure 5: Performance comparison among VAE, t-SNE, ZIFA, UMAP and PCA based on k-means.

For dataset with fewer cells, the performance of t-SNE, umap, ZIFA and PCA is better than VAE.

VAE and umap outperforms t-SNE, ZIFA and PCA whith increase number of cells.

Average silhouette score: average silhouette score measures how well each points lies with its own

cluster, which indicates the separability of each inidividual cluster. The value of average silluetee

score is between -1 to 1, with 1 means the cluster is far away from its neighboring clusters.

 

Figure 6: Performance comparison among VAE, t-SNE, ZIFA, UMAP and PCA based on Average

silhouette score. The average silluetee score does not differ too much for different aproaches. The

performance of UMAP is generally better than the other approaches.

knn-based: for knn-based approach, we used k-nearest neighbor algorithm to learn the pattern

based on the low dimensional latent space, then the performance of classifier was measured by 5-

fold cross validation. The performance of VAE is generally better than the other approaches for

majority of the real datasets.



 

Figure 7: Performance comparison VAE, t-SNE, ZIFA, UMAP and PCA based on k-nearest

neighbor algorithm.

Data augmentation

Data augmentation is a way to reduce overfitting on models by increasing the amount of training

data using information only in the current training set. In images, data augmentation can be

obtained by arbitrary rotations, zooms, and other irrelevant transformations of images to increase

the amount of training data, which allows a deep learning model to capture the differences from the

data and reduces the model’s propensity to learn noise. The same concept also applies to single-

cell transcriptomes. We hypothesized that genomic data augmentation will improve latent feature

generalization by separating biological from technical features and increasing the effective sample

size during training.



We performed data augmentation based on HCA melanoma dataset. We down sampled the

melanoma dataset to test the method stability. The dataset was bootstrapped with 100, 500, 1000

and 2000 cells. We expected data augmentation will contribute more for small number of cells

rather than large number of cells. Salmon (version 0.8.1) [16] was used to do the transcript

abundance quantification and we resampled the reads by 2x, 5x and 10x times to capture the

uncertainty in the data.

Figure 8 and 9 show the performance of data augmentation under different conditions. K-means

and Knn based performance both indicate data augmentation works well for very small numbers of

cells (100), but does not appear to help when the number of cells is modest (2000). 

Figure 8: K-means based performance for data augmentation on HCA melanoma dataset. The

dataset was bootstrapped with 100, 500, 1000 and 2000 cells. Reads were resampled by 2x, 5x

and 10x times to capture the uncertainty in the data.



 

Figure 9: KNN based performance for data augmentation on HCA melanoma dataset. The dataset

was bootstrapped with 100, 500, 1000 and 2000 cells. Reads were resampled by 2x, 5x and 10x

times to capture the uncertainty in the data.

Aim 2: Generate a benchmark dataset of harmonized

public data to evaluate the extent to which HCA cell

types capture rheumatic disease biology.

The HCA’s partnership with the Immunological Genome Project (immgenH) will provide single-cell

gene expression-based immunocyte phenotyping at an unprecedented resolution. A compendium

comprised of bulk gene expression data from autoimmune/rheumatic diseases is exceptionally

well-suited to evaluating the disease relevance of these immunocyte data. The objective of this aim

is to build and share real and simulated benchmark datasets to evaluate the quality of the cell-type

signatures. This will allow CZI to evaluate techniques, including VAEs and other methods, for

defining cell-type-specific expression signatures from the HCA’s single-cell datasets by measuring

their ability to decompose bulk, whole-tissue autoimmune/rheumatic disease data.

We will generate simulated bulk datasets drawn from HCA-identified cell types by combining their

expression profiles at different proportions. We will also build a multi-tissue autoimmune/rheumatic

disease compendium from existing public datasets that we have curated (currently more than

12,000 samples). This compendium includes samples from patients with systemic lupus

erythematosus (SLE), sarcoidosis, and inflammatory bowel disorders among many other diseases.

Such a compendium lets us determine the extent to which HCA-derived cell type signatures

capture disease-relevant information in a way that matches previous literature. For instance, we



expect to detect higher proportions of activated macrophages in lupus nephritis samples than

controls [31].

These bulk compendia (simulated and real data) will enable HCA participants (computational-

method and molecular-assay developers) to directly compare approaches where we expect their

most immediate translational impact: application to existing datasets to explain disease-relevant

phenomena via a single-cell perspective.

Results

TBD.
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