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Abstract

Background Hetnets, short for “heterogeneous networks”, contain multiple node and relationship
types and o�er a way to encode biomedical knowledge. One such example, Hetionet connects 11
types of nodes — including genes, diseases, drugs, pathways, and anatomical structures — with over
2 million edges of 24 types. Previous work has demonstrated that supervised machine learning
methods applied to such networks can identify drug repurposing opportunities. However, a training
set of known relationships does not exist for many types of node pairs, even when it would be useful
to examine how nodes of those types are meaningfully connected. For example, users may be curious
about not only how metformin is related to breast cancer but also how a given gene might be involved
in insomnia.

Findings We developed a new procedure, termed hetnet connectivity search, that proposes
important paths between any two nodes without requiring a supervised gold standard. The algorithm
behind connectivity search identi�es types of paths that occur more frequently than would be
expected by chance (based on node degree alone). Several optimizations were required to
precompute signi�cant instances of node connectivity at the scale of large knowledge graphs.

Conclusion We implemented the method on Hetionet and provide an online interface at
https://het.io/search. We provide an open-source implementation of these methods in our new
Python package named hetmatpy.

https://het.io/search
https://github.com/hetio/hetmatpy


Introduction

A network (also known as a graph) is a conceptual representation of a group of entities —
called nodes — and the relationships between them — called edges. Typically, a network has only one
type of node and one type of edge. However, in many cases, it is necessary to be able to distinguish
between di�erent types of entities and relationships.

A hetnet (short for heterogeneous information network [1]) is a network where nodes and edges
have type. The ability to di�erentiate between di�erent types of entities and relationships allows a
hetnet to describe more complex data accurately. Hetnets are particularly useful in biomedicine,
where it is important to capture the conceptual distinctions between various entities, such as genes
and diseases, and linkages, such as upregulation and binding.

The types of nodes and edges in a hetnet are de�ned by a schema, referred to as a metagraph. The
metagraph consists of metanodes (types of nodes) and metaedges (types of edges). Note that the
pre�x meta refers to the type (e.g. compound), as opposed to a speci�c node/edge/path itself
(e.g. acetaminophen).

One such network is Hetionet, which provides a foundation for building hetnet applications. It uni�es
data from several di�erent, disparate sources into a single, comprehensive, accessible, common-
format network. The database is publicly accessible without login at https://neo4j.het.io. The Neo4j
graph database enables querying Hetionet using the Cypher language, which was designed to interact
with networks where nodes and edges have both types and properties.

The initial application of Hetionet, named Project Rephetio, focused on drug repurposing [2]. The
authors predicted the probability of drug e�cacy for 209,168 compound–disease pairs. A supervised
machine learning approach identi�ed types of paths that occur more or less frequently between
known treatments than non-treatments (Figure 1B). To train the model, the authors created
PharmacotherapyDB, a physician-curated catalog of 755 disease-modifying treatments [3].

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://neo4j.het.io/
https://het.io/repurpose/
https://doi.org/10.6084/m9.figshare.3103054


Figure 1:  A. Hetionet v1.0 metagraph. The types of nodes and edges in Hetionet. 
B. Supervised machine learning approach from Project Rephetio. This �gure visualizes the feature matrix used by
Project Rephetio to make supervised predictions. Each row represents a compound–disease pair. The bottom half of
rows correspond to known treatments (i.e. positives), while the top half correspond to non-treatments (i.e. negatives
under a closed-world assumption, not known to be treatments in PharmacotherapyDB). Here, an equal number of
treatments and non-treatments are shown, but in reality the problem is heavily imbalanced. Project Rephetio scaled
models to assume a positive prevalence of 0.36% [2,4]. Each column represents a metapath, labeled with its
abbreviation. 
Feature values are degree-weighted path counts (abbreviated DWPCs, transformed and standardized), which assess the
connectivity along the speci�ed metapath between the speci�c compound and disease. Green values indicate above-
average connectivity, whereas blue values indicate below-average connectivity. In general, positives have greater
connectivity for the selected metapaths than negatives. Rephetio used a logistic regression model to learn the e�ect of
each type of connectivity (feature) on the likelihood that a compound treats a disease. The model predicts whether a
compound–disease pair is a treatment based on its features, but requires supervision in the form of known treatments.

Project Rephetio successfully predicted treatments, including those under investigation by clinical
trial. However, two challenges limit the applicability of Rephetio. First, Rephetio required known labels
(i.e. treatment status) to train a model. Hence, the approach cannot be applied to domains where
training labels do not exist. Second, the degree-weighted path count (DWPC) metric used to assess
connectivity is sensitive to node degree. The Rephetio approach was incapable of detecting whether a
high DWPC score indicated meaningful connectivity above the level expected by the background
network degrees. Here we develop Hetnet connectivity search, which de�nes a null distribution for
DWPCs that accounts for degree and enables detecting meaningful hetnet connectivity without
training labels.

Existing research into methods for determining whether two nodes are related primarily focuses on
homogeneous networks (without type). Early approaches detected related nodes by measuring
neighborhood overlap or path similarity between two nodes [5,6]. These approaches predicted node
relatedness with success. However, they are challenging to scale as a network grows in size or
semantic richness (i.e. type) [5].

More recently, focus has shifted to graph embeddings to determine if two nodes are related,
speci�cally in the context of knowledge graphs, which are often semantically rich and include type
[7,8,9,10,11]. These types of methods involve mapping nodes and sometimes edges to dense vectors
via neural network models [12,13,14], matrix factorization [15,16], or translational distance models
[17]. Bioteque creates node embeddings from the bipartite network of DWPCs for a given metapath
[18]. Once these dense vectors have been produced, quantitative scores that measure node
relatedness can be generated via a machine learning model [8,19,20] or by selected similarity metrics
[7,9,21,22,23]. These approaches have been quite successful in determining node relatedness. Yet,
they only state whether two nodes are related and fail to explain why two nodes are related.

Explaining why two nodes are related is a nontrivial task because approaches must output more than
a simple similarity score. The �rst group of approaches output a list of ranked paths that are most
relevant between two nodes [24,25,26]. For example, the FAIRY framework explains for why items
appear on a user’s social media feed based on a network of users and content classes (e.g. categories,
user posts, songs) [25]. ESPRESSO explains how two sets of nodes are related by returning subgraphs
[27]. Other approaches such as MetaExp return important metapaths rather than paths, but require
some form of supervision [28,29].

MechRepoNet is a hetnet containing 250,035 nodes across 9 metanodes and 9,652,116 edges across
68 metaedges [30]. The study trained a model using DWPCs as features to predict Compound–treats–
Disease relationships, which was able to select 89 metapaths with positive regression coe�cients. The
authors also created DrugMechDB with a curated set of paths capturing known mechanisms of action
for 123 compound–disease pairs [30]. Metapath coe�cients were used to rank paths, using
DrugMechDB as validation. The method generally performed well, although interpretability was

https://sulab.github.io/DrugMechDB/


challenging when “hundreds, or thousands of paths ranked above the mechanistic path in
DrugMechDB” [30]. To address this issue, the study explored additional path �lters, such as �ltering
for paths that traverse known drug targets, and dimensionality reduction by aggregating paths across
intermediate nodes and summing the path weights. Re�nements to path-scoring techniques might
also be helpful solutions in this context.

Hetnet connectivity search explains how two nodes are related in an unsupervised manner that
captures the semantic richness of edge type and returns results in the form of both metapaths and
paths. Our open-source implementation, including for a query and visualization webserver, was
designed with scalability and responsiveness in mind allowing in-browser exploration.



Findings

Completing hetnet connectivity search involved advances on three fronts. We implemented new
software for e�cient matrix-based operations on hetnets. We developed strategies to e�ciently
calculate the desired connectivity score under the null. We designed and developed a web interface
for easy access to the connectivity search approach.

Hetmatpy Package

We created the hetmatpy Python package, available on GitHub and PyPI under the permissive BSD-2-
Clause Plus Patent License. This package provides matrix-based utilities for hetnets. Each metaedge is
represented by a distinct adjacency matrix, which can be either a dense Numpy array or sparse SciPy
matrix (see HetMat architecture). Adjacency matrices are stored on disk and loaded in a lazy manner
to help scale the software to hetnets that are too large to �t entirely in memory.

The primary focus of the package is to provide compute-optimized and memory-e�cient
implementations of path-counting algorithms. Speci�cally, the package supports computing DWPCs,
which can be done e�ciently using matrix multiplication but require complex adjustments to avoid
counting paths with duplicate nodes (i.e. to �lter walks that are not paths, see DWPC matrix
multiplication algorithms). The package can reuse existing path count computations that span
segments of a longer metapath. The package also supports generating null distributions for DWPCs
derived from permuted networks, see Degree-grouping of node pairs. Since this approach generates
too many permuted DWPC values to store on disk, our implementation retains summary statistics for
each degree group that allow computation of a gamma-hurdle distribution from which null DWPC p-
values can be generated.

DWPC null distribution

To assess connectivity between a source and target node, we use the DWPC metric. The DWPC is
similar to path count (number of paths between the source and target node along a given metapath),
except that it downweights paths through high-degree nodes. Rather than using the raw DWPC for a
source–metapath–target combination, we transform the DWPC across all source–target node pairs for
a metapath to yield a distribution that is more compact and amenable to modeling [31].

Previously, we had no technique for detecting whether a DWPC value was exceptional. One possibility
is to evaluate the DWPCs for all pairs of nodes and select the top scores (e.g. the top 5% of DWPCs).
Another possibility is to pick a transformed DWPC score as a cuto�. The shortcomings of these
methods are twofold. First, neither the percentile nor absolute value of a DWPC has inherent
meaning. To select transformed DWPCs greater than 3.5, or alternatively the top 1% of DWPCs, is
arbitrary. Second, comparing DWPCs between node pairs fails to account for the situation where high-
degree node pairs are likely to score higher, solely on due to their degree (Figure 4).

To address these shortcomings, we developed a method to compute the right-tail p-value of a DWPC.
p-values have a broadly understood interpretation — in our case, the probability that a DWPC equal
to or greater than the observed DWPC could occur under a null model. Our null model is based on
DWPCs generated from permuted networks, where edges have been randomized in a degree-
preserving manner (see Permuted hetnets).

By tailoring the null distribution for a DWPC to the degree of its source and target node (see Degree-
grouping of node pairs), we account for degree e�ects when determining the signi�cance of a DWPC.
To improve the accuracy of DWPC p-values, we use �t a gamma-hurdle distribution to the null DWPCs.

https://github.com/hetio/hetmatpy
https://pypi.org/project/hetmatpy/


In rare cases, there are insu�cient nonzero null DWPCs to �t the gamma portion of the null
distribution. In these cases, we fall back to an empirical calculation as described in Empirical DWPC p-
values.

Enriched metapaths

For each of the 2,205 metapaths in Hetionet v1.0 with length ≤ 3, we computed DWPCs for all node
pairs and their corresponding null distributions, see DWPC and null distribution computation. We
store the most signi�cant DWPCs as described in Prioritizing enriched metapaths for database
storage, which appear as the “precomputed” rows in the webapp metapath table (Figures 3B & 2).
DWPCs that are not retained by the database can be regenerated on the �y. This design allows us to
immediately provide users with the metapaths that are most enriched between two query nodes,
while still allowing on-demand access to the full metrics for all metapaths with length ≤ 3.

Figure 2:  Expanded metapath details from the connectivity search webapp. This is the expanded view of the
metapath table in 3B showing enriched metapaths between Alzheimer’s disease and the circadian rhythm pathway.

Figure 2 shows the information used to compute p-value for enriched metapaths. The table includes
the following columns:

path count: The number of paths between the source and target node of the speci�ed metapath
adjusted p-value: A measure of the signi�cance of the DWPC that indicates whether more paths
were observed than expected due to random chance. Compares the DWPC to a null distribution of
DWPCs generated from degree-preserving permuted networks. Bonferroni-adjusted for the
number of metapaths with the same source metanode, target metanode, and length.
p-value: A measure of the signi�cance of the DWPC that indicates whether more paths were
observed than expected due to random chance. Compares the DWPC to a null distribution of
DWPCs generated from degree-preserving permuted networks. Not adjusted for multiple
comparisons (i.e. when multiple metapaths are assessed for signi�cant connectivity between the
source and target node).
DWPC: Degree-Weighted Path Count — Measures the extent of connectivity between the source
and target node for the given metapath. Like the path count, but with less weight given to paths
along high-degree nodes.
source degree: The number of edges from the source node that are of the same type as the initial
metaedge of the metapath.
target degree: The number of edges from the target node that are of the same type as the �nal
metaedge of the metapath.
# DWPCs: The number of DWPCs calculated on permuted networks used to generate a null
distribution for the DWPC from the real network. Permuted DWPCs are aggregated for all
permuted node pairs with the same degrees as the source and target node.

https://het.io/search/?source=17287&target=7607&metapaths=DaGiGpPW%2CDdGiGpPW%2CDdGpPW%2CDlAeGpPW%2CDrDaGpPW%2CDrDuGpPW%2CDuGiGpPW&complete=


# non-0 DWPCs: The number of permuted DWPCs from the “# of DWPCs” column that were
nonzero. Nonzero DWPCs indicate at least one path between the source and target node existed in
the permuted network.
non-0 mean: The mean of nonzero permuted DWPCs. Used to generate the gamma-hurdle model
of the null DWPC distribution.
non-0 σ: The standard deviation of nonzero permuted DWPCs. Used to generate the gamma-
hurdle model of the null DWPC distribution.
Neo4j Actions: A Cypher query that users can run in the Neo4j browser to show paths with the
largest DWPCs for the metapath.

Enriched paths

In addition to knowing which metapaths are enriched between two query nodes, it is helpful to see
the speci�c paths that contribute highly to such enrichment. Since the DWPC is a summation of a path
metric (called the path degree product), it is straightforward to calculate the proportion of a DWPC
attributable to an individual path. The webapp allows users to select a metapath to populate a table of
the corresponding paths. These paths are generated on the �y through a Cypher query to the
Hetionet Neo4j database.

It is desirable to have a consolidated view of paths across multiple metapaths. Therefore, we calculate
a path score heuristic, which can be used to compare the importance of paths between metapaths.
The path score equals the proportion of the DWPC contributed by a path multiplied by the magnitude
of the DWPC’s p-value (-log10(p)). To illustrate, the paths webapp panel includes the following
information (Figure 3C):

path: The sequence of edges in the network connecting the source node to the target node.
Duplicate nodes are not permitted in paths.
path score: A metric of how meaningful the path is in describing the connectivity between the
source and target node. The score combines the magnitude of the metapath’s p-value with the
percentage of the DWPC contributed by the path.
% of DWPC The contribution of the path to the DWPC for its metapath. This metric compares the
importance of all paths of the same metapath from the source node to the target node.

Hetio Website and Connectivity Search Webapp

We revamped the website hosted at https://het.io to serve as a uni�ed home for this study and the
hetnet-related research that preceded it. The website provides the connectivity search webapp
running over the hetio network and several other interactive apps for prior projects. It also includes
high-level information on hetnets and Hetionet, citation and contact details, links to supporting
studies and software, downloads and exploration of Hetionet data, and related media.

We created the connectivity search webapp available at https://het.io/search/. The tool is free to use,
without any login or authentication. The app allows users to quickly explore how any two nodes in
Hetionet v1.0 might be related. The work�ow accepts one or more nodes as input and shows the user
the most important metapaths and paths for a pair of query nodes.

The design guides the user through selecting a source and target node (Figure 3A). The webapp
returns metapaths, scored by whether they occurred more than expected based on network degree
(Figure 3B). Users can proceed by requesting the speci�c paths for each metapath, which are placed in
a uni�ed table sorted according to their path score (Figure 3C). Finally, the webapp produces
publication-ready visualizations containing user-selected paths (Figure 3D).

https://neo4j.het.io/browser/
https://het.io/
https://het.io/search/


Figure 3:  Using the connectivity search webapp to explore the pathophysiology of Alzheimer’s disease. This
�gure shows an example user work�ow for https://het.io/search/. 
A. The user selects two nodes. Here, the user is interested in Alzheimer’s disease, so selects this as the source node. The
user limits the target node search to metanodes relating to gene function. The target node search box suggests nodes,
sorted by the number of signi�cant metapaths. When the user types in the target node box, the matches reorder based
on search word similarity. Here, the user becomes interested in how the circadian rhythm might relate to Alzheimer’s
disease. 
B. The webapp returns metapaths between Alzheimer’s disease and the circadian rhythm pathway. The user unchecks
“precomputed only” to compute results for all metapaths with length ≤ 3, not just those that surpass the database
inclusion threshold. The user sorts by adjusted p-value and selects 7 of the top 10 metapaths. 
C. Paths for the selected metapaths are ordered by their path score (limited to 100 paths for each metapath). The user
selects 8 paths (1 from a subsequent page of results) to show in the graph visualization and highlights a single path
involving ARNT2 for emphasis. 
D. A subgraph displays the previously selected paths. The user improves on the automated layout by repositioning
nodes. Clicking an edge displays its properties, informing the user that association between Creutzfeldt–Jakob disease
and NPAS2 was detected by genome-wide association study.

https://het.io/search/
https://het.io/search/?source=17287
https://het.io/search/?source=17287&target=7607&metapaths=DaGiGpPW%2CDdGiGpPW%2CDdGpPW%2CDlAeGpPW%2CDrDaGpPW%2CDrDuGpPW%2CDuGiGpPW&complete=


Discussion

In this study, we introduce a search engine for hetnet connectivity between two nodes that returns
results in real time. An interactive webapp helps users explore node connectivity by ranking
metapaths and paths, while visualizing multiple paths in a subgraph.

We made several methodological contributions to support this application. We developed optimized
algorithms for computing DWPCs using matrix multiplication. In addition, we created a method for
estimating a p-value for a DWPC, using null DWPCs computed on permuted hetnets. We implemented
these advances in the open-source hetmatpy Python package and HetMat data structure to provide
highly optimized computational infrastructure for representing and reasoning on hetnets using
matrices.

This work lays the foundation for exciting future directions. For many queries, a large number of paths
are returned. Interpretation of large lists is di�cult. Therefore, the dimensionality of results could be
reduced by aggregating path scores across intermediate nodes or edges [32].

Here, we computed all DWPCs for Hetionet metapaths with length ≤ 3. Our search engine will
therefore overlook important connectivity from longer metapaths. However, it is infeasible to
compute DWPCs for all longer metapaths. One solution would be to only extend metapaths detected
as informative. For example, if a CbGpPWpG metapath is deemed informative, it could be extended
with additional metaedges like CbGpPWpGaD. One unsupervised approach would be to use the
distribution of DWPC p-values for a metapath to detect whether the paths still convey su�cient
information, for example by requiring an enrichment of small p-values. Were this method to fail,
supervised alternatives could be explored, such as the ability for DWPCs from a longer metapath to
predict that of a shorter metapath or metaedge, with care taken to prevent label leakage. One �nal
approach could learn from user interest and compute longer metapaths only when requested.

This work focuses on queries where the input is a node pair. Equally interesting would be queries
where the input is a set of nodes of the same type, optionally with weights. The search would
compute DWPCs for paths originating on the query nodes. The simpler formulation would compute
DWPCs for metapaths separately and compare to null distributions from permuted hetnets. A more
advanced formulation would combine scores across metapaths such that every node in the hetnet
would receive a single score capturing its connectivity to the query set. This approach would have
similar utility to gene set enrichment analysis in that the user could provide a set of genes as input
and receive a ranked list of nodes that characterize the function of the query genes. However, it would
excel in its versatility by returning results of any node type without requiring prede�ned gene sets to
match against. Some users might be interested in node set transformations where scores for one
node type are converted to another node type. This approach could take scores for human genes and
convert them to side e�ects, diseases, pathways, and so on.

Our work is not without limitations. The �nal application relies on multiple databases and cached
computations speci�c to Hetionet v1.0. Despite striving for a modular architecture, generating an
equivalent search webapp for a di�erent hetnet would require adaptation due to the many data
sources involved. Furthermore, we would bene�t from greater real-world evaluation of the
connectivity search results to help identify situations where the method underperforms. Despite
these challenges, our study demonstrates one of the �rst public search engines for node connectivity
on a biomedical knowledge graph, while contributing methods and software that we hope will inspire
future work.



Methods

Hetionet

We used the hetionet knowledge graph to demonstrate connectivity search. Hetionet is a knowledge
graph of human biology, disease, and medicine, integrating information from millions of studies and
decades of research. Hetionet v1.0 combines information from 29 public databases. The network
contains 47,031 nodes of 11 types (Table 1) and 2,250,197 edges of 24 types (Figure 1A).

Table 1:  Node types in Hetionet, including the abbreviation, number of nodes, and description for each of the 11
metanodes in Hetionet v1.0.

Metanode Abbr Nodes Description

Anatomy A 402

Anatomical structures,
excluding structures that
are known not to be found
in humans. From Uberon.

Biological Process BP 11381

Larger processes or
biological programs
accomplished by multiple
molecular activities.
From Gene Ontology.

Cellular Component CC 1391

The locations relative to
cellular structures in which
a gene product performs a
function. From Gene
Ontology.

Compound C 1552

Approved small-molecule
compounds with
documented chemical
structures. From DrugBank.

Disease D 137

Complex diseases, selected
to be distinct and speci�c
enough to be clinically
relevant yet general enough
to be well annotated.
From Disease Ontology.

Gene G 20945
Protein-coding human
genes. From Entrez Gene.

Molecular Function MF 2884

Activities that occur at the
molecular level, such as
“catalysis” or “transport”.
From Gene Ontology.

Pathway PW 1822

A series of actions among
molecules in a cell that
leads to a certain product
or change in the cell.
From WikiPathways, Reacto
me, and Pathway
Interaction Database.

https://het.io/about/
https://git.dhimmel.com/rephetio-manuscript/#tbl:resources
https://git.dhimmel.com/rephetio-manuscript/#tbl:metanodes
https://git.dhimmel.com/rephetio-manuscript/#tbl:metaedges
http://uberon.github.io/
http://geneontology.org/
http://geneontology.org/
https://www.drugbank.ca/
http://disease-ontology.org/
https://www.ncbi.nlm.nih.gov/gene
http://geneontology.org/
https://www.wikipathways.org/index.php/WikiPathways
https://reactome.org/


Metanode Abbr Nodes Description

Pharmacologic Class PC 345

“Chemical/Ingredient”,
“Mechanism of Action”, and
“Physiologic E�ect” FDA
class types.
From DrugCentral.

Side E�ect SE 5734
Adverse drug reactions.
From SIDER/UMLS.

Symptom S 438

Signs and Symptoms
(i.e. clinical abnormalities
that can indicate a medical
condition). From the MeSH
ontology.

One limitation that restricts the applicability of Hetionet is incompleteness. In many cases, Hetionet
v1.0 includes only a subset of the nodes from a given resource. For example, the Disease Ontology
contains over 9,000 diseases [33], while Hetionet includes only 137 diseases [34]. Nodes were
excluded to avoid redundant or overly speci�c nodes, while ensuring a minimum level of connectivity
for compounds and diseases. See the Project Rephetio methods for more details [2]. Nonetheless,
Hetionet v1.0 remains one of the most comprehensive and integrative networks that consolidates
biomedical knowledge into a manageable number of node and edge types [35]. Other integrative
resources, some still under development, include Wikidata [36], SemMedDB [37,38,39], SPOKE [40],
and RTX-KG2c [41].

HetMat architecture

At the core of the hetmatpy package is the HetMat data structure for storing and accessing the
network. HetMats are stored on disk as a directory, which by convention uses a .hetmat  extension.
A HetMat directory stores a single heterogeneous network, whose data resides in the following �les.

1. A metagraph.json  �le stores the schema, de�ning which types of nodes and edges comprise the
hetnet. This format is de�ned by the hetnetpy Python package. Hetnetpy was originally developed
with the name hetio during prior studies [2,42], but we renamed it to hetnetpy for better
disambiguation from hetmatpy.

2. A nodes  directory containing one �le per node type (metanode) that de�nes each node.
Currently, .tsv  �les in which each row represents a node are supported.

3. An edges  directory containing one �le per edge type (metadata) that encodes the adjacency
matrix. The matrix can be serialized using either the Numpy dense format ( .npy ) or SciPy sparse
format ( .sparse.npz ).

For node and edge �les, compression is supported as detected from .gz , .bz2 , .zip , and .xz
extensions. This structure of storing a hetnet supports selectively reading nodes and edges into
memory. For example, a certain computation may only require access to a subset of the node and
edge types. By only loading the required node and edge types, we reduce memory usage and read
times.

Additional subdirectories, such as path-counts  and permutations , store data generated from
the HetMat. By using consistent paths for generated data, we avoid recomputing data that already
exist on disk. A HetMat directory can be zipped for archiving and transfer. Users can selectively
include generated data in archives. Since the primary application of HetMats is to generate
computationally demanding measurements on hetnets, the ability to share HetMats with
precomputed data is paramount.

http://drugcentral.org/
http://sideeffects.embl.de/
https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/mesh/meshhome.html
https://git.dhimmel.com/rephetio-manuscript/#nodes
https://www.wikidata.org/
https://skr3.nlm.nih.gov/SemMedDB/
https://spoke.ucsf.edu/
https://github.com/RTXteam/RTX-KG2
https://github.com/hetio/hetnetpy
https://github.com/hetio/hetnetpy/issues/40
https://hetio.github.io/hetmatpy/reference/hetmatpy/hetmat/#hetmat


The HetMat  class implements the above logic. A hetmat_from_graph  function creates a HetMat
object and directory on disk from the preexisting hetnetpy.hetnet.Graph  format.

We converted Hetionet v1.0 to HetMat format and uploaded the hetionet-v1.0.hetmat.zip
archive to the Hetionet data repository.

DWPC matrix multiplication algorithms

Prior to this study, we used two implementations for computing DWPCs. The �rst is a pure Python
implementation available in the hetnetpy.pathtools.DWPC  function [42]. The second uses a
Cypher query, prepared by hetnetpy.neo4j.construct_dwpc_query , that is executed by the
Neo4j database [2,43]. Both of these implementations require traversing all paths between the source
and target node. Hence, they are computationally cumbersome despite optimizations [44].

Since our methods only require degree-weighted counts, not fully enumerated paths, adjacency
matrix multiplication presents an alternative approach. Multiplication alone, however, counts walks
rather than paths, meaning paths traversing a single node multiple times are counted. When
computing network-based features to quantify the relationship between a source and target node, we
would like to exclude traversing duplicate nodes (i.e. paths, not trails or walks) [45]. We developed a
suite of algorithms to compute true path counts and DWPCs using matrix multiplication that bene�ts
from the speed advantages of only counting paths.

Our implementation begins by categorizing a metapath according to the pattern of its repeated
metanodes, allowing DWPC computation using a specialized order of operations. For example, the
metapath DrDtCrC is categorized as a set of disjoint repeats, while DtCtDpC is categorized as repeats
of the form BABA. Many complex repeat patterns can be represented piecewise as simpler patterns,
allowing us to compute DWPC for most metapaths up to length 5 and many of length 6 and beyond
without enumerating individual paths. For example, disjoint groups of repeats like DrDtCrC can be
computed as the matrix product of DWPC matrices for DrD and CrC. Randomly inserted non-repeated
metanodes (e.g. G in DrDaGaDrD) require no special treatment and are included in DWPC with matrix
multiplication.

After metapath categorization, we segment metapaths according to their repeat pattern, following our
order of operations. By segmenting and computing recursively, we can e�ciently evaluate DWPC on
highly complex metapaths, using simple patterns as building blocks for higher-level patterns. Finally,
our specialized DWPC functions are applied to individual segments, the results are combined, and
�nal corrections are made to ensure no repeated nodes are counted. The recursive, segmented
approach we developed also allowed us to implement a caching strategy that improved speed by
avoiding duplicate DWPC computations. In summary, the functionality we developed resulted in more
than a 175-fold reduction in compute time, allowing us to compute millions of DWPC values across
Hetionet [46].

Details of matrix DWPC implementation

DWPC computation requires us to remove all duplicate nodes from paths. We used three repeat
patterns as the building blocks for DWPC computation: short repeats (AAA), nested repeats (BAAB),
and overlapping repeats (BABA). Let  denote the DWPC matrix for metapath XwXyZ.
Under this notation,  is the degree-weighted (bi)adjacency matrix for metaedge XyZ.
Additionally, let  represent a diagonal matrix whose entries are the diagonal elements of .

For the case of short (< 4) repeats for a single metanode, XaXbX (e.g. GiGdG), we simply subtract the
main diagonal.

D(XwXyZ)
D(XyZ)

diag(A) A

https://hetio.github.io/hetmatpy/reference/hetmatpy/hetmat/#hetmat
https://github.com/hetio/hetionet/tree/master/hetnet/matrix
https://github.com/hetio/hetnetpy/blob/aa16e6a7092c039a6b175a73a35c006e53acee20/hetnetpy/pathtools.py#L8-L21
https://github.com/hetio/hetnetpy/blob/aa16e6a7092c039a6b175a73a35c006e53acee20/hetnetpy/neo4j.py#L363-L393


Nested repeats XaYbYcX (e.g. CtDrDtC), are treated recursively, with both inner (YY) and outer (XX)
repeats treated as separate short repeats.

Overlapping repeats XaYbXcY (e.g. CtDtCtD) require several corrections (  denotes the Hadamard
product).

Most paths of length six—and many even longer paths—can be represented hierarchically using these
patterns. For example, a long metapath pattern of the form CBABACXYZ can be segmented as
(C(BABA)C)XYZ using patterns for short and overlapping repeats and can be computed using the tools
we developed. In addition to these matrix routines—which advantageously count rather than
enumerate paths—we implemented a general matrix method for any metapath type. The general
method is important for patterns such as long (≥ 4) repeats, or complex repeat patterns (e.g. of the
form ABCABC), but it requires path enumeration and is therefore slower. As an alternative approach
for complex paths, we developed an approximate DWPC method that corrects repeats in disjoint
simple patterns but only corrects the �rst repeat in complex patterns (e.g. ≥ length four repeat).
Mayers et al. developed an alternative approximation, which subtracts the main diagonal at every
occurrence of the �rst repeated metanode [47]. Our matrix methods were validated against the
existing Python and Cypher implementations in the hetnetpy  package that rely on explicit path
enumeration.

Permuted hetnets

In order to generate a null distribution for a DWPC, we rely on DWPCs computed from permuted
hetnets. We derive permuted hetnets from the unpermuted network using the XSwap algorithm [48].
XSwap randomizes edges while preserving node degree. Therefore, it’s ideal for generating null
distributions that retain general degree e�ects, but destroy the actual meaning of edges. We adapt
XSwap to hetnets by applying it separately to each metaedge [2,49,50].

Project Rephetio created 5 permuted hetnets [2,49], which were used to generate a null distribution
of classi�er performance for each metapath-based feature. Here, we aim to create a null distribution
for individual DWPCs, which requires vastly more permuted values to estimate with accuracy.
Therefore, we generated 200 permuted hetnets. Permutations 001–005 were those generated by
Project Rephetio, while permutations 006–200 were generated by this study. For the newly generated
permutations, we attempted 10 times the number of swaps as edges for a given metaedge, which is
the default multiplier set by the hetnetpy permute_graph  function. More recently, we also
developed the xswap  Python package, whose optimized C/C++ implementation will enable future
research to generate even larger sets of permuted networks [50].

Degree-grouping of node pairs

For each of the 200 permuted networks and each of the 2,205 metapaths, we computed the entire
DWPC matrix (i.e. all source nodes × target nodes). Therefore, for each actual DWPC value, we

D(XaXbX) = D(XaX)D(XbX) − diag(D(XaX)D(XbX))

D(XaYbYcX) = D(XaY)D(YbY)D(YcX) − diag(D(XaY)(D(YbY)D(YcX))

⊙

D(XaYbXcY) =  D(XaY) D(YbX) D(XcY)

− diag(D(XaY) D(YbX)) D(XcY)

− D(XaY) diag(D(YbX) D(XcY))

+ D(XaY)  ⊙ D(YbX)T   ⊙ D(XcY)

https://github.com/hetio/hetionet/tree/a95ae76581af604e91d744680aee3f888fa18887/hetnet/permuted/matrix
https://github.com/greenelab/xswap


computed 200 permuted DWPC values. Because permutation preserves only node degree, DWPC
values among nodes with the same source and target degrees are equivalent to additional
permutations. We greatly increased the e�ective number of permutations by grouping DWPC values
according to node degree, a�ording us a superior estimation of the DWPC null distribution.

We have applied this degree-grouping approach previously when calculating the prior probability of
edge existence based on the source and target node degrees [50,51]. But here, we apply degree-
grouping to null DWPCs. The result is that the null distribution for a DWPC is based not only on
permuted DWPCs for the corresponding source–metapath–target combination, but instead on all
permuted DWPCs for the source-degree–metapath–target-degree combination.

The “# DWPCs” column in Figure 2 illustrates how degree-grouping in�ates the sample size of null
DWPCs. The p-value for the DaGiGpPW metapath relies on the minimum number of null DWPCs (200),
since no other disease besides Alzheimer’s had 196 associates edges (source degree) and no other
pathway besides circadian rhythm had 201 participates edges (target degree). However, for other
metapaths with over 5,000 null DWPCs, degree-grouping increased the size of the null distribution by
a factor of 25. In general, source–target node pairs with lower degrees receive the largest sample size
multiplier from degree-grouping. This is convenient since low-degree nodes also tend to produce the
highest proportion of zero DWPCs, by virtue of low connectivity. Consequently, degree-grouping
excels where it is most needed.

One �nal bene�t of degree-grouping is that it reduces the disk space required to store null DWPC
summary statistics. For example, with 20,945 genes in Hetionet v1.0, there exist 438,693,025 gene
pairs. Gene nodes have 302 distinct degrees for interacts edges, resulting in 91,204 degree pairs. This
equates to an 4,810-fold reduction in the number of summary statistics that need to be stored to
represent the null DWPC distribution for a metapath starting and ending with a Gene–interacts–Gene
metaedge.

We store the following null DWPC summary statistics for each metapath–source-degree–target-degree
combination: total number of null DWPCs, total number of nonzero null DWPCs, sum of null DWPCs,
sum of squared null DWPCs, and number of permuted hetnets. These values are su�cient to estimate
the p-value for a DWPC, by either �tting a gamma-hurdle null distribution or generating an empiric p-
value. Furthermore, these statistics are additive across permuted hetnets. Their values are always a
running total and can be updated incrementally as statistics from each additional permuted hetnet
become available.

Figure 4 shows how various aspects of DWPCs vary by degree group. The rows display the following
metrics of the DWPC distribution for all node-pairs in a given degree-group:

# Nonzero DWPCs: The number of nonzero DWPCs values (on average per network to enable
comparison).
% Nonzero DWPCs: Of the total number of DWPCs, the percentage that is nonzero. As node
degrees increase, the chance of node pairs having at least one path, and hence a nonzero DWPC,
greatly increases.
Mean DWPC: The average value of all DWPCs including zeros.
Mean Nonzero DWPC: The average value of nonzero DWPCs.
Std Dev Nonzero DWPC: The standard deviation of nonzero DWPCs.
Gamma Model β: The β parameter of the gamma model �t on nonzero DWPCs. Note that the
gamma model is only �t on permuted network DWPCs to estimate a null distribution for the
unpermuted network DWPCs. Since this parameter varies with source & target node degree, it is
important to �t a separate gamma model for each degree group.

https://github.com/hetio/hetmatpy/blob/bc36aa9859c43a1a5fb22808cd6eb952ef9d497c/hetmatpy/pipeline.py#L42-L63




Figure 4:  Path-based metrics vary by node degree and network permutation status. Each row shows a di�erent
metric of the DWPC distribution for the CbGpPWpG metapath — traversing Compound–binds–Gene–participates–
Pathway–participates–Gene, selected for illustrative purposes. Metrics are computed for degree-groups, which is a
speci�c pair of source degree (in this case, the source compound’s count of CbG edges) and target degree (in this case,
the target gene’s count of GpPW edges). On the left, metrics are reported for the unpermuted hetnet and on the right
for the 200 permuted hetnets. Hence, each cell on the right summarizes 200 times the number of DWPCs as the
corresponding cell on the left. The colormap is row normalized, such that its intensity peaks for the maximum value of
each metric across the unpermuted and permuted values. Gray indicates null values.

Gamma-hurdle distribution

We are interested in identifying source and target nodes whose connectivity exceeds what typically
arises at random. To identify such especially-connected nodes, we compare DWPC values to the
distribution of permuted network DWPC values for the same source and target nodes. While a single
DWPC value is not actually a test statistic, we use a framework akin to classical hypothesis testing to
identify outliers.

Two observations led us to the quasi-signi�cance testing framework we developed. First, a sizable
fraction of permuted DWPC values is often zero, indicating that the source and target nodes are not
connected along the metapath in the permuted network. Second, we observed that non-zero DWPC
values for any given source and target nodes are reasonably approximated as following a gamma
distribution. Motivated by these observations, we parametrized permuted DWPC values using a zero-
in�ated gamma distribution, which we termed the gamma-hurdle distribution. We �t a gamma-hurdle
distribution to each combination of source node, target node, and metapath. Finally, we estimated the
probability of observing a permuted DWPC value greater than DWPC computed in the unpermuted
network, akin to a one-tailed p-value. These quasi-signi�cance scores (‘p-values’) allow us to identify
outlier node pairs at the metapath level (see examples in Figure 5).

Figure 5:  From null distribution to p-value for DWPCs. Null DWPC distributions are shown for three metapaths
between Alzheimer’s disease and the circadian rhythm pathway, selected from Figure 2. For each metapath, null DWPCs
are computed on 200 permuted hetnets and grouped according to source–target degree. Histograms show the null
DWPCs for the degree group corresponding to Alzheimer’s disease and the circadian rhythm pathway (as noted in the
plot titles by deg). The proportion of null DWPCs that were zero is calculated, forming the “hurdle” of the null
distribution model. The nonzero null DWPCs are modeled using a gamma distribution, which can be �t solely from a
sample mean and standard deviation. The mean of nonzero null DWPCs is denoted with a diamond, with the standard
deviation plotted twice as a line in either direction. Actual DWPCs are compared to the gamma-hurdle null distribution
to yield a p-value.



Details of the gamma-hurdle distribution

Let X be a gamma-hurdle random variable with parameters λ, α, and β.

The gamma-hurdle distribution is de�ned over the support [0, ∞). The probability of a draw, X, from
the gamma-hurdle distribution is given as follows:

We estimate all three parameters using the method of moments (using Bessel’s correction to estimate
the second moment). As a validation of our method, we compared our method of moments
parameter estimates to approximate maximum likelihood estimates (gamma distribution parameters
do not have closed-form maximum likelihood estimates) and found excellent concordance between
the methods. Let N be the number of permuted DWPC values, and n the number of nonzero values.

Finally, we compute a p-value for each DWPC value, t.

Empirical DWPC p-values

We calculate an empirical p-value for special cases where the gamma-hurdle model cannot be
applied. These cases include when the observed DWPC is zero or when the null DWPC distribution is
all zeroes or has only a single distinct nonzero value. The empirical p-value (pempiric) equals the
proportion of null DPWCs ≥ the observed DWPC.

Since we do not store all null DWPC values, we apply the following criteria to calculate pempiric from
summary statistics:

1. When the observed DWPC = 0 (no paths of the speci�ed metapath existed between the source and
target node), pempiric = 1.

2. When all null DWPCs are zero but the observed DWPC is positive, pempiric = 0.
3. When all nonzero null DWPCs have the same positive value (standard deviation = 0), pempiric = 0 if

the observed DWPC > the null DWPC else pempiric = proportion of nonzero null DWPCs.

DWPC and null distribution computation

X ∼ ΓH(λ,α,β)

P(X = 0) = 1 − λ

P(X ∈ A;A ⊆ (0, ∞)) = ∫
x∈A

(xα−1e−βx)λβα

Γ(α)

λ̂ =

α̂ =

β̂ =

n

N
(n − 1)∑xi

n∑(x2
i ) − (∑xi)2

n − 1

n

(∑xi)
2
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p = P(X ≥ t) = ∫
∞

t

xα−1 exp(−βx)dx
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Γ(α)
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We decided to compute DWPCs and their signi�cance for all source–target node pairs for metapaths
with length ≤ 3. On Hetionet v1.0, there are 24 metapaths of length 1, 242 metapaths of length 2, and
1,939 metapaths of length 3. The decision to stop at length 3 was one of practicality, as length 4 would
have added 17,511 metapaths.

For each of the 2,205 metapaths, we computed the complete path count matrix and DWPC matrix. In
total, we computed 137,786,767,964 path counts (and the same number of DWPCs) on the
unpermuted network, of which 11.6% were nonzero.

The DWPC has a single parameter, called the damping exponent (w), which controls how much paths
through high-degree nodes are downweighted [42]. When w = 0, the DWPC is equivalent to the path
count. Previously, we found w = 0.4 was optimal for predicting disease-associated genes [42]. Here, we
use w = 0.5, since taking the square root of degrees has more intuitive appeal.

We selected data types for matrix values that would allow for high precision. We used 64-bit unsigned
integers for path counts and 64-bit �oating-point numbers for DWPCs. We considered using 16 bits or
32 bits per DWPC to reduce memory/storage requirements, but decided against it in case certain
applications required greater precision.

We used SciPy sparse for path count and DWPC matrices with density < 0.7, serialized to disk with
compression and a .sparse.npz  extension. This format minimizes the space on disk and load time
for the entire matrix but does not o�er read access to slices. We used Numpy 2 dimensional arrays for
DWPC matrices with density ≥ 0.7, serialized to disk using Numpy’s .npy  format. We bundled the
path count and DWPC matrix �les into HetMat archives by metapath length and deposited the
archives to Zenodo [52]. The archive for length 3 DWPCs was the largest at 131.7 GB.

We also generated null DWPC summary statistics for the 2,205 metapaths, which are also available by
metapath length from Zenodo as HetMat archives consisting of .tsv.gz  �les [52]. Due to degree-
grouping, null DWPC summary statistic archives are much smaller than the DWPC archives. The
archive for length 3 null DWPCs summary statistics was 733.1 MB. However, the compute required to
generate null DWPCs is far greater because there are multiple permuted hetnets (in our case 200). As
a result, computing and saving all DWPCs took 6 hours, whereas computing and saving the null DWPC
summary statistics took 361 hours.

Including null DWPCs and path counts, the Zenodo deposit totals 185.1 GB and contains the results of
computing ~28 trillion DWPCs — 27,832,927,128,728 to be exact.

Adjusting DWPC p-values

When a user applies hetnet connectivity search to identify enriched metapaths between two nodes,
many metapaths are evaluated for signi�cance. Due to multiple testing of many DWPCs, low p-values
are likely to arise by chance. Therefore, we devised a multiple-testing correction.

For each combination of source metanode, target metanode, and length, we counted the number of
metapaths. For Disease…Pathway metapaths, there are 0 metapaths of length 1, 3 metapaths of
length 2, and 24 metapaths of length 3. We calculated adjusted p-values by applying a Bonferroni
correction based on the number of metapaths of the same length between the source and target
metanode. Using Figure 2 as an example, the DdGpPW p-value of 5.9% was adjusted to 17.8%
(multiplied by a factor of 3).

Bonferroni controls family-wise error rate, which corresponds here to incorrectly �nding that any
metapath of a given length is enriched. As a result, our adjusted p-values are conservative. We would

https://github.com/greenelab/connectivity-search-analyses/raw/042063fb559048e52b3dc2731b6d6c6836f698cf/explore/bulk-pipeline/archives/metapath-dwpc-stats.tsv
https://github.com/greenelab/connectivity-search-analyses/blob/1c6827ce2544c17cef42bbccf098a312f2c44f97/explore/bulk-pipeline/bulk.ipynb
https://github.com/greenelab/connectivity-search-analyses/pull/91
https://het.io/search/?source=17287&target=7607&metapaths=DdGpPW&complete=


prefer to adjust p-values for false discovery rate [53], but these methods often require access to all p-
values at once (impractical here) and assume a uniform distribution of p-values when there is no
signal (not the case here when most DWPCs are zero).

Prioritizing enriched metapaths for database storage

Storing DWPCs and their signi�cance in the database (as part of the PathCount  table in Figure 6)
enables the connectivity search webapp to provide users with enriched metapaths between query
nodes in real time. However, storing ~15.9 billion rows (the total number of nonzero DWPCs) in the
database’s PathCount  table would exceed a reasonable disk quota. An alternative would be to store
all DWPCs in the database whose adjusted p-value exceeded a universal threshold (e.g. p < 5%). But
we estimated this would still be prohibitively expensive. Therefore, we devised a metapath-speci�c
threshold. For metapaths with length 1, we stored all nonzero DWPCs, assuming users always want to
be informed about direct edges between the query nodes, regardless of signi�cance. For metapaths
with length ≥ 2, we chose an adjusted p-value threshold of 5 × (nsource × ntarget)

−0.3, where nsource and
ntarget are the node counts for the source and target metanodes (i.e. “Nodes” column in Table 1).
Notice that metapaths with large number of possible source–target pairs (large DWPC matrices) are
penalized. This decision is based on practicality since otherwise the majority of the database quota
would be consumed by a minority of metapaths between plentiful metanodes (e.g. Gene…Gene
metapaths). Also, we assume that users will search nodes at a similar rate by metanode (e.g. they’re
more likely to search for a speci�c disease than a speci�c gene). The constants in the threshold
formula help scale it. The multiplier of 5 relaxes the threshold to saturate the available database
capacity. The −0.3 exponent applies the large DWPC-matrix penalty.

Users can still evaluate DWPCs that are not stored in the database, using either the webapp or API.
These are calculated on the �y, delegating DWPC computation to the Neo4j database. Unchecking
“precomputed only” on the webapp shows all possible metapaths for two query nodes. For some
node pairs, the on-the-�y computation is quick (less than a second). Other times, computing DWPCs
for all metapaths might take more than a minute.

Backend Database & API

We created a backend application using Python’s Django web framework. The source code is available
in the connectivity-search-backend  repository. The primary role of the backend is to manage a
relational database and provide an API for requesting data.

We de�ne the database schema using Django’s object-relational mapping framework (Figure 6). We
import the data into a PostgreSQL database. Populating the database for all 2,205 metapaths up to
length 3 was a prolonged operation, taking over 3 days. The majority of the time is spent populating
the DegreeGroupedPermutation  (37,905,389 rows) and PathCount  (174,986,768 rows) tables. To
avoid redundancy, the database only stores a single orientation of a metapath. For example, if rows
are stored for the GpPWpGaD metapath, they would not also be stored for the DaGpPWpG metapath.
The backend is responsible for checking both orientations of a metapath in the database and
reversing metapaths on-the-�y before returning results. The database is located at search-
db.het.io  with public read-only access available.

https://github.com/greenelab/connectivity-search-backend
https://github.com/greenelab/connectivity-search-backend/blob/af12f8cf2ad47d9a25ce8d1b7889390654eb3bb9/dj_hetmech_app/models.py
https://github.com/greenelab/connectivity-search-backend/blob/af12f8cf2ad47d9a25ce8d1b7889390654eb3bb9/dj_hetmech_app/management/commands/populate_database.py
https://github.com/greenelab/connectivity-search-backend/pull/41#issuecomment-488054789
https://github.com/greenelab/connectivity-search-backend#database


Figure 6:  Schema for the connectivity search backend relational database models. Each Django model is
represented as a table, whose rows list the model’s �eld names and types. Each model corresponds to a database table.
Arrows denote foreign key relationships. The arrow labels indicate the foreign key �eld name followed by reverse
relation names generated by Django (in parentheses).

We host a public API instance at https://search-api.het.io. Version 1 of the API exposes several
endpoints that are used by the connectivity search frontend including queries for node details
( /v1/node ), node lookup ( /v1/nodes ), metapath information ( /v1/metapaths ), and path
information ( /v1/paths ). The endpoints return JSON payloads. Producing results for these queries
relies on internal calls to the PostgreSQL relational database as well as the pre-existing Hetionet v1.0
Neo4j graph database. They were designed to power the hetnet connectivity search webapp, but are
also available for general research use.

Frontend

Hetio Website

We created a static website to serve as the home for the Hetio organization using Jekyll hosted on
GitHub Pages (Figure 7). The source code is available in the het.io  repository. To make a change to
the website, an author simply commits the changes (either directly or through a pull request) to the
repository’s gh-pages  branch, and GitHub automatically recompiles the website and hosts the
resulting �les at the provided custom domain URL.

https://search-api.het.io/
https://github.com/hetio/het.io


Figure 7:  Homepage of the Hetio website. The redesigned homepage provides a succinct overview of what Hetionet
consists of and what its purpose is.

Webapps

We developed the connectivity search app as a single-page, standalone application using React and
associated tools. The source code is available in the connectivity-search-frontend  repository.

Since the rest of the overarching Hetio website was mostly noninteractive content, it was appropriate
to construct the bulk of the website in simple static formats like Markdown and HTML using Jekyll, and
leave React for implementing the sections of the site that required more complex behavior.

We used React’s own create-react-app  command-line tool to generate a boilerplate for the app.
This simpli�ed setup, testing, and building pipelines, bypassing time-consuming con�guration of
things like Webpack and linters. Some con�guration was necessary to produce non-hashed,
consistently named output �les like index.js  that could be easily and reliably referenced by and
embedded into the Hetio Jekyll website.

For authoring components, we used React’s traditional class syntax. At the time of authoring the app,
React Hooks were still nascent, and thus the simpler and less-verbose functional syntax was not
viable.

While writing this application, we also elected to rewrite the preexisting Rephetio and disease-
associated genes apps in the same manner. We created a custom package of React components and
utility functions that could be shared across the multiple interactive apps on the website. The package
is located at and can be installed from the frontend-components  repository. The package consists
of interface “components” (building blocks) like buttons and sortable/searchable/paginated tables as
well as utility functions for formatting data and debugging. Each of the interactive apps imports this
package to reduce code repetition and to enforce a consistent style and behavior across the website.

https://het.io/search
https://github.com/greenelab/connectivity-search-frontend
https://het.io/repurpose/
https://het.io/disease-genes/
https://github.com/hetio/frontend-components


For managing state in the connectivity search app, we used the Redux library. Redux was chosen over
vanilla React or other state management libraries since:

1. The state in this app was very “global”, meaning most of it was needed by a lot of di�erent parts of
the app. Redux provides a convenient global “store” of state that is easily accessible to any
component, avoiding the “prop-drilling” phenomenon.

2. The structure of the state is nested and complex. Redux’s “reducer” approach makes it cleaner to
modify this type of data.

3. Redux’s approach to immutable state that is updated by actions and pure functions makes the
application easier to debug. It is easy to get a clear timeline of how and when the state changed,
and what changed it.

To create the graph visualization at the bottom of the app, the D3 library was used. D3 satis�ed
several core requirements:

1. SVG implementation for high-resolution, publication-ready �gures.
2. Force-directed layout for untangling nodes.
3. Pinnable nodes and other physics customizations.
4. Customizable node and edge drag/hover/select behavior.
5. Intuitive pan/zoom view that worked on desktop and mobile.
6. Node and edge appearances that were completely customizable for alignment, text wrapping,

color, outlines, fonts, arrowheads, and noncolliding coincident edges.

Visual Design

A limited palette of colors was chosen to represent the di�erent types of nodes (metanodes) in the
Hetionet knowledge graph. These colors are listed and programmatically accessible in the hetionet
repository under /describe/styles.json .

At the time of developing connectivity search, Hetionet already had an established palette of colors
(from Project Rephetio). To avoid confusion, we were careful to keep the general hue of each
metanode color the same for backward compatibility, e.g. genes stayed generally blue, diseases
stayed generally brown. In this way, this palette selection was more of a modernization/refresh. For
cohesiveness, accessibility, and aesthetic appeal, we used the professionally curated Material Design
palette as a source for the speci�c color values.

The palette is now used in all Hetio-related applications and materials. This is not just to maintain a
consistent look and feel across the Hetio organization, but to convey clear and precise meaning. For
example, the colors used in the metagraph in Figure 1A are exactly the same colors, and thus
represent the same types of entities, as in any part of the connectivity search app (Figure 3).

Colors in the palette are also used in the Hetio logo (seen in Figure 7) and other miscellaneous logos
and iconography across the website, to establish an identi�able brand for the Hetio organization as a
whole.

Real-time open science

This study was conducted entirely in the open via public GitHub repositories. We used GitHub Issues
for discussion, leaving a rich online history of the scholarly process. Furthermore, most additions to
the analyses were performed by pull request, whereby a contributor proposes a set of changes. This
provides an opportunity for other contributors to review changes before they are o�cially accepted.
For example, in greenelab/connectivity-search-analyses#156 @zietzm proposed a notebook to

https://github.com/hetio/hetionet
https://github.com/hetio/hetionet/pull/18
https://github.com/greenelab/connectivity-search-analyses/pull/156


visualize parameters for null DWPC distributions. After @zietzm addressed @dhimmel’s comments,
the pull request was approved and merged into the project’s main branch.

The manuscript for this study was written using Manubot, which allows authors to collaboratively
write manuscripts on GitHub [54]. The Manubot-rendered manuscript is available at
https://greenelab.github.io/connectivity-search-manuscript/. We encourage readers with feedback or
questions to comment publicly via GitHub Issues.

Software & data availability

Hetio is a superset/collection of hetnet-related research, tools, and datasets that, most notably,
includes the Hetionet project itself and the connectivity search tool that are the focus of this article.
Most of the Hetio resources and projects can be found under the Hetio GitHub organization, with
others being available under the Greene Lab GitHub organization, one of the collaborating groups.
Information about Hetio is also displayed and disseminated at https://het.io, as noted in the Hetio
Website section.

Availability of Supporting Source Code and Requirements

Project name: Hetnet Connectivity Search
Project homepage: https://het.io/search/
Operating systems: Platform independent
Programming language: Python, Javascript, Cypher
Other requirements: Refer to speci�c repositories below for their respective dependency
con�guration �les
License: Refer to speci�c repositories below, but generally software is released under BSD, �gures
and documentation under CC BY, and data under CC0.
RRID: SCR_023630
biotools ID: connectivity-search

This study primarily involves the following GitHub repositories:

greenelab/connectivity-search-manuscript [55]: Source code for this manuscript. Best place for
general comments or questions. CC BY 4.0 License.
greenelab/connectivity-search-analyses [56]: The initial project repository that contains research
notebooks, dataset generation code, and exploratory data analyses. The hetmatpy package was
�rst developed as part of this repository until its relocation in November 2018. BSD 3-Clause
License.
greenelab/connectivity-search-backend [57]: Source code for the connectivity search database and
API. BSD 3-Clause License.
greenelab/connectivity-search-frontend [58]: Source code for the connectivity search webapp. BSD
3-Clause License.
hetio/hetmatpy [59]: Python package for matrix storage and operations on hetnets. Released on
PyPI. BSD 2-Clause Plus Patent License. Registered at biotools:hetmatpy and RRID:SCR_023409.
hetio/hetnetpy [60]: Preexisiting Python package for representing hetnets. Dependency of
hetmatpy. Released on PyPI. Dual licensed under BSD 2-Clause Plus Patent License and CC0 1.0
(public domain dedication).
hetio/hetionet [61]: Preexisiting data repository for Hetionet, including the public Neo4j instance
and HetMat archives. CC0 1.0 License.
hetio/het.io [62]: Preexisiting source code for the https://het.io/ website. CC BY 4.0 License.

Data availability

https://manubot.org/
https://greenelab.github.io/connectivity-search-manuscript/
https://github.com/greenelab/connectivity-search-manuscript/issues
https://github.com/hetio
https://github.com/greenelab
https://het.io/
https://het.io/search/
https://scicrunch.org/resolver/RRID:SCR_023630
https://bio.tools/connectivity-search
https://github.com/greenelab/connectivity-search-manuscript
https://github.com/greenelab/connectivity-search-analyses
https://github.com/hetio/hetmatpy/issues/1
https://github.com/greenelab/connectivity-search-backend
https://github.com/greenelab/connectivity-search-frontend
https://github.com/hetio/hetmatpy
https://pypi.org/project/hetmatpy/
https://bio.tools/hetmatpy
https://scicrunch.org/resolver/RRID:SCR_023409
https://github.com/hetio/hetnetpy
https://pypi.org/project/hetnetpy/
https://github.com/hetio/hetionet
https://github.com/hetio/het.io
https://het.io/


An archival copy of the code and supporting data is available via the GigaScience repository [63]. The
connectivity-search-analyses and hetionet repositories contain datasets related to this study. Large
datasets were compressed and tracked with Git LFS (Large File Storage). GitHub LFS had a max �le
size of 2 GB. Datasets exceeding this size, along with other essential datasets, are available from
Zenodo [52].
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