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Abstract

Correlation coe�cients are widely used to identify patterns in data that may be of particular interest.
In transcriptomics, genes with correlated expression often share functions or are part of disease-
relevant biological processes. Here we introduce the Clustermatch Correlation Coe�cient (CCC), an
e�cient, easy-to-use and not-only-linear coe�cient based on machine learning models. CCC reveals
biologically meaningful linear and nonlinear patterns missed by standard, linear-only correlation
coe�cients. CCC captures general patterns in data by comparing clustering solutions while being
much faster than state-of-the-art coe�cients such as the Maximal Information Coe�cient. When
applied to human gene expression data, CCC identi�es robust linear relationships while detecting
nonlinear patterns associated, for example, with sex di�erences that are not captured by linear-only
coe�cients. Gene pairs highly ranked by CCC were enriched for interactions in integrated networks
built from protein-protein interaction, transcription factor regulation, and chemical and genetic
perturbations, suggesting that CCC could detect functional relationships that linear-only methods
missed. CCC is a highly-e�cient, next-generation not-only-linear correlation coe�cient that can
readily be applied to genome-scale data and other domains across di�erent data types.

Introduction

New technologies have vastly improved data collection, generating a deluge of information across
di�erent disciplines. This large amount of data provides new opportunities to address unanswered
scienti�c questions, provided we have e�cient tools capable of identifying multiple types of
underlying patterns. Correlation analysis is an essential statistical technique for discovering
relationships between variables [1]. Correlation coe�cients are often used in exploratory data mining
techniques, such as clustering or community detection algorithms, to compute a similarity value
between a pair of objects of interest such as genes [2] or disease-relevant lifestyle factors [3].
Correlation methods are also used in supervised tasks, for example, for feature selection to improve
prediction accuracy [4,5]. The Pearson correlation coe�cient is ubiquitously deployed across
application domains and diverse scienti�c areas. Thus, even minor and signi�cant improvements in
these techniques could have enormous consequences in industry and research.

In transcriptomics, many analyses start with estimating the correlation between genes. More
sophisticated approaches built on correlation analysis can suggest gene function [6], aid in
discovering common and cell lineage-speci�c regulatory networks [7], and capture important
interactions in a living organism that can uncover molecular mechanisms in other species [8,9]. The
analysis of large RNA-seq datasets [10,11] can also reveal complex transcriptional mechanisms
underlying human diseases [2,12,13,14,15]. Since the introduction of the omnigenic model of complex
traits [16,17], gene-gene relationships are playing an increasingly important role in genetic studies of
human diseases [18,19,20,21], even in speci�c �elds such as polygenic risk scores [22]. In this context,
recent approaches combine disease-associated genes from genome-wide association studies (GWAS)
with gene co-expression networks to prioritize “core” genes directly a�ecting diseases [19,20,23].
These core genes are not captured by standard statistical methods but are believed to be part of
highly-interconnected, disease-relevant regulatory networks. Therefore, advanced correlation
coe�cients could immediately �nd wide applications across many areas of biology, including the
prioritization of candidate drug targets in the precision medicine �eld.

The Pearson and Spearman correlation coe�cients are widely used because they reveal intuitive
relationships and can be computed quickly. However, they are designed to capture linear or
monotonic patterns (referred to as linear-only) and may miss complex yet critical relationships. Novel
coe�cients have been proposed as metrics that capture nonlinear patterns such as the Maximal
Information Coe�cient (MIC) [24] and the Distance Correlation (DC) [25]. MIC, in particular, is one of



the most commonly used statistics to capture more complex relationships, with successful
applications across several domains [4,26,27]. However, the computational complexity makes them
impractical for even moderately sized datasets [26,28]. Recent implementations of MIC, for example,
take several seconds to compute on a single variable pair across a few thousand objects or conditions
[26]. We previously developed a clustering method for highly diverse datasets that signi�cantly
outperformed approaches based on Pearson, Spearman, DC and MIC in detecting clusters of
simulated linear and nonlinear relationships with varying noise levels [29]. Here we introduce the
Clustermatch Correlation Coe�cient (CCC), an e�cient not-only-linear coe�cient that works across
quantitative and qualitative variables. CCC has a single parameter that limits the maximum complexity
of relationships found (from linear to more general patterns) and computation time. CCC provides a
high level of �exibility to detect speci�c types of patterns that are more important for the user, while
providing safe defaults to capture general relationships. We also provide an e�cient CCC
implementation that is highly parallelizable, allowing to speed up computation across variable pairs
with millions of objects or conditions. To assess its performance, we applied our method to gene
expression data from the Genotype-Tissue Expression v8 (GTEx) project across di�erent tissues [30].
CCC captured both strong linear relationships and novel nonlinear patterns, which were entirely
missed by standard coe�cients. For example, some of these nonlinear patterns were associated with
sex di�erences in gene expression, suggesting that CCC can capture strong relationships present only
in a subset of samples. We also found that the CCC behaves similarly to MIC in several cases, although
it is much faster to compute. Gene pairs detected in expression data by CCC had higher interaction
probabilities in tissue-speci�c gene networks from the Genome-wide Analysis of gene Networks in
Tissues (GIANT) [31]. Furthermore, its ability to e�ciently handle diverse data types (including
numerical and categorical features) reduces preprocessing steps and makes it appealing to analyze
large and heterogeneous repositories.

Results

A robust and e�cient not-only-linear dependence coe�cient

Figure 1:  Di�erent types of relationships in data. Each panel contains a set of simulated data points described by
two generic variables:  and . The �rst row shows Anscombe’s quartet with four di�erent datasets (from Anscombe I to
IV) and 11 data points each. The second row contains a set of general patterns with 100 data points each. Each panel
shows the correlation value using Pearson ( ), Spearman ( ) and CCC ( ). Vertical and horizontal red lines show how CCC
clustered data points using  and .
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The CCC provides a similarity measure between any pair of variables, either with numerical or
categorical values. The method assumes that if there is a relationship between two variables/features
describing  data points/objects, then the clusterings of those objects using each variable should
match. In the case of numerical values, CCC uses quantiles to e�ciently separate data points into
di�erent clusters (e.g., the median separates numerical data into two clusters). Once all clusterings
are generated according to each variable, we de�ne the CCC as the maximum adjusted Rand index
(ARI) [32] between them, ranging between 0 and 1. Details of the CCC algorithm can be found in
Methods.

We examined how the Pearson ( ), Spearman ( ) and CCC ( ) correlation coe�cients behaved on
di�erent simulated data patterns. In the �rst row of Figure 1, we examine the classic Anscombe’s
quartet [33], which comprises four synthetic datasets with di�erent patterns but the same data
statistics (mean, standard deviation and Pearson’s correlation). This kind of simulated data, recently
revisited with the “Datasaurus” [34,35,36], is used as a reminder of the importance of going beyond
simple statistics, where either undesirable patterns (such as outliers) or desirable ones (such as
biologically meaningful nonlinear relationships) can be masked by summary statistics alone.

Anscombe I contains a noisy but clear linear pattern, similar to Anscombe III where the linearity is
perfect besides one outlier. In these two examples, CCC separates data points using two clusters (one
red line for each variable  and ), yielding 1.0 and thus indicating a strong relationship. Anscombe II
seems to follow a partially quadratic relationship interpreted as linear by Pearson and Spearman. In
contrast, for this potentially undersampled quadratic pattern, CCC yields a lower yet non-zero value of
0.34, re�ecting a more complex relationship than a linear pattern. Anscombe IV shows a vertical line
of data points where  values are almost constant except for one outlier. This outlier does not
in�uence CCC as it does for Pearson or Spearman. Thus  (the minimum value) correctly
indicates no association for this variable pair because, besides the outlier, for a single value of  there
are ten di�erent values for . This pair of variables does not �t the CCC assumption: the two clusters
formed with  (approximately separated by ) do not match the three clusters formed with .
The Pearson’s correlation coe�cient is the same across all these Anscombe’s examples ( ),
whereas Spearman is 0.50 or greater. These simulated datasets show that both Pearson and
Spearman are powerful in detecting linear patterns. However, any deviation in this assumption (like
nonlinear relationships or outliers) a�ects their robustness.

We simulated additional types of relationships (Figure 1, second row), including some previously
described from gene expression data [37,38,39]. For the random/independent pair of variables, all
coe�cients correctly agree with a value close to zero. The non-coexistence pattern, captured by all
coe�cients, represents a case where one gene ( ) might be expressed while the other one ( ) is
inhibited, highlighting a potentially strong biological relationship (such as a microRNA negatively
regulating another gene). For the other two examples (quadratic and two-lines), Pearson and
Spearman do not capture the nonlinear pattern between variables  and . These patterns also show
how CCC uses di�erent degrees of complexity to capture the relationships. For the quadratic pattern,
for example, CCC separates  into more clusters (four in this case) to reach the maximum ARI. The
two-lines example shows two embedded linear relationships with di�erent slopes, which neither
Pearson nor Spearman detect (  and , respectively). Here, CCC increases the
complexity of the model by using eight clusters for  and six for , resulting in .

The CCC reveals linear and nonlinear patterns in human
transcriptomic data

We next examined the characteristics of these correlation coe�cients in gene expression data from
GTEx v8 across di�erent tissues. We selected the top 5,000 genes with the largest variance for our
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initial analyses on whole blood and then computed the correlation matrix between genes using
Pearson, Spearman and CCC (see Methods).

We examined the distribution of each coe�cient’s absolute values in GTEx (Figure 2). CCC (mean=0.14,
median=0.08, sd=0.15) has a much more skewed distribution than Pearson (mean=0.31, median=0.24,
sd=0.24) and Spearman (mean=0.39, median=0.37, sd=0.26). The coe�cients reach a cumulative set
containing 70% of gene pairs at di�erent values (Figure 2 b), ,  and ,
suggesting that for this type of data, the coe�cients are not directly comparable by magnitude, so we
used ranks for further comparisons. In GTEx v8, CCC values were closer to Spearman and vice versa
than either was to Pearson (Figure 2 c). We also compared the Maximal Information Coe�cient (MIC)
in this data (see Supplementary Note 1). We found that CCC behaved very similarly to MIC, although
CCC was up to two orders of magnitude faster to run (see Supplementary Note 2). MIC, an advanced
correlation coe�cient able to capture general patterns beyond linear relationships, represented a
signi�cant step forward in correlation analysis research and has been successfully used in various
application domains [4,26,27]. These results suggest that our �ndings for CCC generalize to MIC,
therefore, in the subsequent analyses we focus on CCC and linear-only coe�cients.

a) b)

c)

Figure 2:  Distribution of coe�cient values on gene expression (GTEx v8, whole blood). a) Histogram of coe�cient
values. b) Corresponding cumulative histogram. The dotted line maps the coe�cient value that accumulates 70% of
gene pairs. c) 2D histogram plot with hexagonal bins between all coe�cients, where a logarithmic scale was used to
color each hexagon.

A closer inspection of gene pairs that were either prioritized or disregarded by these coe�cients
revealed that they captured di�erent patterns. We analyzed the agreements and disagreements by
obtaining, for each coe�cient, the top 30% of gene pairs with the largest correlation values (“high” set)
and the bottom 30% (“low” set), resulting in six potentially overlapping categories. For most cases
(76.4%), an UpSet analysis [40] (Figure 3 a) showed that the three coe�cients agreed on whether
there is a strong correlation (42.1%) or there is no relationship (34.3%). Since Pearson and Spearman
are linear-only, and CCC can also capture these patterns, we expect that these concordant gene pairs

c = 0.18 p = 0.44 s = 0.56



represent clear linear patterns. CCC and Spearman agree more on either highly or poorly correlated
pairs (4.0% in “high”, and 7.0% in “low”) than any of these with Pearson (all between 0.3%-3.5% for
“high”, and 2.8%-5.5% for “low”). In summary, CCC agrees with either Pearson or Spearman in 90.5% of
gene pairs by assigning a high or a low correlation value.
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Figure 3:  Intersection of gene pairs with high and low correlation coe�cient values (GTEx v8, whole blood). a)
UpSet plot with six categories (rows) grouping the 30% of the highest (green triangle) and lowest (red triangle) values for
each coe�cient. Columns show di�erent intersections of categories grouped by agreements and disagreements. b)
Hexagonal binning plots with examples of gene pairs where CCC ( ) disagrees with Pearson ( ) and Spearman ( ). For
each method, colors in the triangles indicate if the gene pair is among the top (green) or bottom (red) 30% of coe�cient
values. No triangle means that the correlation value for the gene pair is between the 30th and 70th percentiles (neither
low nor high). A logarithmic scale was used to color each hexagon.

While there was broad agreement, more than 20,000 gene pairs with a high CCC value were not highly
ranked by the other coe�cients (right part of Figure 3 a). There were also gene pairs with a high
Pearson value and either low CCC (1,075), low Spearman (87) or both low CCC and low Spearman
values (531). However, our examination suggests that many of these cases appear to be driven by
potential outliers (Figure 3 b, and analyzed later). We analyzed gene pairs among the top �ve of each
intersection in the “Disagreements” group (Figure 3 a, right) where CCC disagrees with Pearson,
Spearman or both.

c p s



Figure 4:  The expression levels of KDM6A and UTY display sex-speci�c associations across GTEx tissues. CCC
captures this nonlinear relationship in all GTEx tissues (nine examples are shown in the �rst three rows), except in
female-speci�c organs (last row).



The �rst three gene pairs at the top (IFNG - SDS, JUN - APOC1, and ZDHHC12 - CCL18), with high CCC
and low Pearson values, appear to follow a non-coexistence relationship: in samples where one of the
genes is highly (slightly) expressed, the other is slightly (highly) activated, suggesting a potentially
inhibiting e�ect. The following three gene pairs (UTY - KDM6A, RASSF2 - CYTIP, and AC068580.6 -
KLHL21) follow patterns combining either two linear or one linear and one independent relationships.
In particular, genes UTY and KDM6A (paralogs) show a nonlinear relationship where a subset of
samples follows a robust linear pattern and another subset has a constant (independent) expression
of one gene. This relationship is explained by the fact that UTY is in chromosome Y (Yq11) whereas
KDM6A is in chromosome X (Xp11), and samples with a linear pattern are males, whereas those with
no expression for UTY are females. This combination of linear and independent patterns is captured
by CCC ( , above the 80th percentile) but not by Pearson ( , below the 55th
percentile) or Spearman ( , below the 15th percentile). Furthermore, the same gene pair
pattern is highly ranked by CCC in all other tissues in GTEx, except for female-speci�c organs (Figure
4).

Replication of gene associations using tissue-speci�c gene networks
from GIANT

We sought to systematically analyze discrepant scores to assess whether associations were replicated
in other datasets besides GTEx. This is challenging and prone to bias because linear-only correlation
coe�cients are usually used in gene co-expression analyses. We used 144 tissue-speci�c gene
networks from the Genome-wide Analysis of gene Networks in Tissues (GIANT) [41,42], where nodes
represent genes and each edge a functional relationship weighted with a probability of interaction
between two genes (see Methods). Importantly, the version of GIANT used in this study did not
include GTEx samples [43], making it an ideal case for replication. These networks were built from
expression and di�erent interaction measurements, including protein-interaction, transcription factor
regulation, chemical/genetic perturbations and microRNA target pro�les from the Molecular
Signatures Database (MSigDB [44]). We reasoned that highly-ranked gene pairs using three di�erent
coe�cients in a single tissue (whole blood in GTEx, Figure 3) that represented real patterns should
often replicate in a corresponding tissue or related cell lineage using the multi-cell type functional
interaction networks in GIANT. In addition to predicting a network with interactions for a pair of
genes, the GIANT web application can also automatically detect a relevant tissue or cell type where
genes are predicted to be speci�cally expressed (the approach uses a machine learning method
introduced in [45] and described in Methods). For example, we obtained the networks in blood and
the automatically-predicted cell type for gene pairs RASSF2 - CYTIP (CCC high, Figure 5 a) and MYOZ1 -
TNNI2 (Pearson high, Figure 5 b). In addition to the gene pair, the networks include other genes
connected according to their probability of interaction (up to 15 additional genes are shown), which
allows estimating whether genes are part of the same tissue-speci�c biological process. Two large
black nodes in each network’s top-left and bottom-right corners represent our gene pairs. A green
edge means a close-to-zero probability of interaction, whereas a red edge represents a strong
predicted relationship between the two genes. In this example, genes RASSF2 and CYTIP (Figure 5 a),
with a high CCC value ( , above the 73th percentile) and low Pearson and Spearman (

 and , below the 38th and 17th percentiles, respectively), were both strongly
connected to the blood network, with interaction scores of at least 0.63 and an average of 0.75 and
0.84, respectively (Supplementary Table 1). The autodetected cell type for this pair was leukocytes,
and interaction scores were similar to the blood network (Supplementary Table 1). However, genes
MYOZ1 and TNNI2, with a very high Pearson value ( ), moderate Spearman ( ) and
very low CCC ( ), were predicted to belong to much less cohesive networks (Figure 5 b), with
average interaction scores of 0.17 and 0.22 with the rest of the genes, respectively. Additionally, the
autodetected cell type (skeletal muscle) is not related to blood or one of its cell lineages. These
preliminary results suggested that CCC might be capturing blood-speci�c patterns missed by the
other coe�cients.

c = 0.29 p = 0.24
s = 0.10

c = 0.20
p = 0.16 s = 0.11

p = 0.97 s = 0.28
c = 0.03
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Figure 5:  Analysis of GIANT tissue-speci�c predicted networks for gene pairs prioritized by correlation
coe�cients. a-b) Two gene pairs prioritized by correlation coe�cients (from Figure 3 b) with their predicted networks
in blood (left) and an automatically selected tissue/cell type (right) using the method described in [45]. A node
represents a gene and an edge the probability that two genes are part of the same biological process in a speci�c cell
type. A maximum of 15 genes are shown for each network. The GIANT web application automatically determined a
minimum interaction con�dence (edges’ weights) to be shown. These networks can be analyzed online using the
following links: RASSF2 - CYTIP [46], MYOZ1 - TNNI2 [47]. c) Summary of predicted tissue/cell type networks for gene
pairs exclusively prioritized by CCC and Pearson. The �rst row combines all gene pairs where CCC is high and Pearson or
Spearman are low. The second row combines all gene pairs where Pearson is high and CCC or Spearman are low. Bar
plots (left) show the number of gene pairs for each predicted tissue/cell type. Box plots (right) show the average
probability of interaction between genes in these predicted tissue-speci�c networks. Red indicates CCC-only tissues/cell
types, blue are Pearson-only, and purple are shared.

We next performed a systematic evaluation using the top 100 discrepant gene pairs between CCC and
the other two coe�cients. For each gene pair prioritized in GTEx (whole blood), we autodetected a
relevant cell type using GIANT to assess whether genes were predicted to be speci�cally expressed in
a blood-relevant cell lineage. For this, we used the top �ve most commonly autodetected cell types for
each coe�cient and assessed connectivity in the resulting networks (see Methods). The top 5
predicted cell types for gene pairs highly ranked by CCC and not by the rest were all blood-speci�c
(Figure 5 c, top left), including macrophage, leukocyte, natural killer cell, blood and mononuclear
phagocyte. The average probability of interaction between genes in these CCC-ranked networks was
signi�cantly higher than the other coe�cients (Figure 5 c, top right), with all medians larger than 67%
and �rst quartiles above 41% across predicted cell types. In contrast, most Pearson’s gene pairs were
predicted to be speci�c to tissues unrelated to blood (Figure 5 c, bottom left), with skeletal muscle
being the most commonly predicted tissue. The interaction probabilities in these Pearson-ranked



networks were also generally lower than in CCC, except for blood-speci�c gene pairs (Figure 5 c,
bottom right). The associations exclusively detected by CCC in whole blood from GTEx were more
strongly replicated in these independent networks that incorporated multiple data modalities. CCC-
ranked gene pairs not only had high probabilities of belonging to the same biological process but
were also predicted to be speci�cally expressed in blood cell lineages. Conversely, most Pearson-
ranked gene pairs were not predicted to be blood-speci�c, and their interaction probabilities were
relatively low. This lack of replication in GIANT suggests that top Pearson-ranked gene pairs in GTEx
might be driven mainly by outliers, which is consistent with our earlier observations of outlier-driven
associations (Figure 3 b).

Discussion

We introduce the Clustermatch Correlation Coe�cient (CCC), an e�cient not-only-linear machine
learning-based statistic. Applying CCC to GTEx v8 revealed that it was robust to outliers and detected
linear relationships as well as complex and biologically meaningful patterns that standard coe�cients
missed. In particular, CCC alone detected gene pairs with complex nonlinear patterns from the sex
chromosomes, highlighting the way that not-only-linear coe�cients can play in capturing sex-speci�c
di�erences. The ability to capture these nonlinear patterns, however, extends beyond sex di�erences:
it provides a powerful approach to detect complex relationships where a subset of samples or
conditions are explained by other factors (such as di�erences between health and disease). We found
that top CCC-ranked gene pairs in whole blood from GTEx were replicated in independent tissue-
speci�c networks trained from multiple data types and attributed to cell lineages from blood, even
though CCC did not have access to any cell lineage-speci�c information. This suggests that CCC can
disentangle intricate cell lineage-speci�c transcriptional patterns missed by linear-only coe�cients. In
addition to capturing nonlinear patterns, the CCC was more similar to Spearman than Pearson,
highlighting their shared robustness to outliers. The CCC results were concordant with MIC, but much
faster to compute and thus practical for large datasets. Another advantage over MIC is that CCC can
also process categorical variables together with numerical values. CCC is conceptually easy to
interpret and has a single parameter that controls the maximum complexity of the detected
relationships while also balancing compute time.

Datasets such as Anscombe or “Datasaurus” highlight the value of visualization instead of relying on
simple data summaries. While visual analysis is helpful, for many datasets examining each possible
relationship is infeasible, and this is where more sophisticated and robust correlation coe�cients are
necessary. Advanced yet interpretable coe�cients like CCC can focus human interpretation on
patterns that are more likely to re�ect real biology. The complexity of these patterns might re�ect
heterogeneity in samples that mask clear relationships between variables. For example, genes UTY -
KDM6A (from sex chromosomes), detected by CCC, have a strong linear relationship but only in a
subset of samples (males), which was not captured by linear-only coe�cients. This example, in
particular, highlights the importance of considering sex as a biological variable (SABV) [48] to avoid
overlooking important di�erences between men and women, for instance, in disease manifestations
[49,50]. More generally, a not-only-linear correlation coe�cient like CCC could identify signi�cant
di�erences between variables (such as genes) that are explained by a third factor (beyond sex
di�erences), that would be entirely missed by linear-only coe�cients.

It is well-known that biomedical research is biased towards a small fraction of human genes [51,52].
Some genes highlighted in CCC-ranked pairs (Figure 3 b), such as SDS (12q24) and ZDHHC12 (9q34),
were previously found to be the focus of fewer than expected publications [53]. It is possible that the
widespread use of linear coe�cients may bias researchers away from genes with complex
coexpression patterns. A beyond-linear gene co-expression analysis on large compendia might shed
light on the function of understudied genes. For example, gene KLHL21 (1p36) and AC068580.6
(ENSG00000235027, in 11p15) have a high CCC value and are missed by the other coe�cients. KLHL21



was suggested as a potential therapeutic target for hepatocellular carcinoma [54] and other cancers
[55,56]. Its nonlinear correlation with AC068580.6 might unveil other important players in cancer
initiation or progression, potentially in subsets of samples with speci�c characteristics (as suggested in
Figure 3 b).

Not-only-linear correlation coe�cients might also be helpful in the �eld of genetic studies. In this
context, genome-wide association studies (GWAS) have been successful in understanding the
molecular basis of common diseases by estimating the association between genotype and phenotype
[57]. However, the estimated e�ect sizes of genes identi�ed with GWAS are generally modest, and
they explain only a fraction of the phenotype variance, hampering the clinical translation of these
�ndings [58]. Recent theories, like the omnigenic model for complex traits [16,17], argue that these
observations are explained by highly-interconnected gene regulatory networks, with some core genes
having a more direct e�ect on the phenotype than others. Using this omnigenic perspective, we and
others [19,20,23] have shown that integrating gene co-expression networks in genetic studies could
potentially identify core genes that are missed by linear-only models alone like GWAS. Our results
suggest that building these networks with more advanced and e�cient correlation coe�cients could
better estimate gene co-expression pro�les and thus more accurately identify these core genes.
Approaches like CCC could play a signi�cant role in the precision medicine �eld by providing the
computational tools to focus on more promising genes representing potentially better candidate drug
targets.

Our analyses have some limitations. We worked on a sample with the top variable genes to keep
computation time feasible. Although CCC is much faster than MIC, Pearson and Spearman are still the
most computationally e�cient since they only rely on simple data statistics. Our results, however,
reveal the advantages of using more advanced coe�cients like CCC for detecting and studying more
intricate molecular mechanisms that replicated in independent datasets. The application of CCC on
larger compendia, such as recount3 [11] with thousands of heterogeneous samples across di�erent
conditions, can reveal other potentially meaningful gene interactions. The single parameter of CCC, 

, controls the maximum complexity of patterns found and also impacts the compute time. Our
analysis suggested that  was su�cient to identify both linear and more complex patterns in
gene expression. A more comprehensive analysis of optimal values for this parameter could provide
insights to adjust it for di�erent applications or data types.

While linear and rank-based correlation coe�cients are exceptionally fast to calculate, not all relevant
patterns in biological datasets are linear. For example, patterns associated with sex as a biological
variable are not apparent to the linear-only coe�cients that we evaluated but are revealed by not-
only-linear methods. Beyond sex di�erences, being able to use a method that inherently identi�es
patterns driven by other factors is likely to be desirable. Not-only-linear coe�cients can also
disentangle intricate yet relevant patterns from expression data alone that were replicated in models
integrating di�erent data modalities. CCC, in particular, is highly parallelizable, and we anticipate
e�cient GPU-based implementations that could make it even faster. The CCC is an e�cient, next-
generation correlation coe�cient that is highly e�ective in transcriptome analyses and potentially
useful in a broad range of other domains.

Methods

The code needed to reproduce all of our analyses and generate the �gures is available in
https://github.com/greenelab/ccc. We provide scripts to download the required data and run all the
steps. A Docker image is provided to use the same runtime environment.

kmax

kmax = 10

https://github.com/greenelab/ccc


The CCC algorithm

The Clustermatch Correlation Coe�cient (CCC) computes a similarity value  between any
pair of numerical or categorical features/variables  and  measured on  objects. CCC assumes that
if two features  and  are similar, then the partitioning by clustering of the  objects using each
feature separately should match. For example, given  and 

, where , partitioning each variable into two clusters ( )
using their medians (29.5 for  and 295 for ) would result in partition  for , and

partition  for . Then, the agreement between  and  can be computed

using any measure of similarity between partitions, like the adjusted Rand index (ARI) [32]. In that
case, it will return the maximum value (1.0 in the case of ARI). Note that the same value of  might not
be the right one to �nd a relationship between any two features. For instance, in the quadratic
example in Figure 1, CCC returns a value of 0.36 (grouping objects in four clusters using one feature
and two using the other). If we used only two clusters instead, CCC would return a similarity value of
0.02. Therefore, the CCC algorithm (shown below) searches for this optimal number of clusters given a
maximum , which is its single parameter .

The main function of the algorithm, ccc , generates a list of partitionings  and  (lines 14 and
15), for each feature  and . Then, it computes the ARI between each partition in  and  (line
16), and then it keeps the pair that generates the maximum ARI. Finally, since ARI does not have a
lower bound (it could return negative values, which in our case are not meaningful), CCC returns only
values between 0 and 1 (line 17).

c ∈ [0, 1]
x y n

x y n

x = (11, 27, 32, 40)
y = 10x = (110, 270, 320, 400) n = 4 k = 2

x y Ωx

k=2 = (1, 1, 2, 2) x

Ω
y

k=2 = (1, 1, 2, 2) y Ωx

k=2 Ω
y

k=2

k

k kmax

Ωx Ωy

x y Ωx Ωy



Interestingly, since CCC only needs a pair of partitions to compute a similarity value, any type of
feature that can be used to perform clustering/grouping is supported. If the feature is numerical (lines
2 to 5 in the get_partitions  function), then quantiles are used for clustering (for example, the
median generates  clusters of objects), from  to . If the feature is categorical
(lines 7 to 9), the categories are used to group objects together. Consequently, since features are
internally categorized into clusters, numerical and categorical variables can be naturally integrated
since clusters do not need an order.

For all our analyses we used . This means that for each gene pair, 18 partitions are
generated (9 for each gene, from  to ), and 81 ARI comparisons are performed. Smaller
values of  can reduce computation time, although at the expense of missing more
complex/general relationships. Our examples in Figure 1 suggest that using  would force
CCC to �nd linear-only patterns, which could be a valid use case scenario where only this kind of
relationships are desired. In addition,  implies that only two partitions are generated, and
only one ARI comparison is performed. In this regard, our Python implementation of CCC provides
�exibility in specifying . For instance, instead of the maximum  (an integer), the parameter could
be a custom list of integers: for example, [2, 5, 10]  will partition the data into two, �ve and ten
clusters.

For a single pair of features (genes in our study), generating partitions or computing their similarity
can be parallelized. We used three CPU cores in our analyses to speed up the computation of CCC. A
future improved implementation of CCC could potentially use graphical processing units (GPU) to
parallelize its computation further.

A Python implementation of CCC (optimized with numba  [59]) can be found in our Github repository
[60], as well as a package published in the Python Package Index (PyPI) that can be easily installed.

Gene expression data and preprocessing

We downloaded GTEx v8 data for all tissues, normalized using TPM (transcripts per million), and
focused our primary analysis on whole blood, which has a good sample size (755). We selected the top
5,000 genes from whole blood with the largest variance after standardizing with  to avoid a
bias towards highly-expressed genes. We then computed Pearson, Spearman, MIC and CCC on these
5,000 genes across all 755 samples on the TPM-normalized data, generating a pairwise similarity
matrix of size 5,000 x 5,000.

Tissue-speci�c network analyses using GIANT

We accessed tissue-speci�c gene networks of GIANT using both the web interface and web services
provided by HumanBase [42]. The GIANT version used in this study included 987 genome-scale
datasets with approximately 38,000 conditions from around 14,000 publications. Details on how these
networks were built are described in [31]. Brie�y, tissue-speci�c gene networks were built using gene
expression data (without GTEx samples [43]) from the NCBI’s Gene Expression Omnibus (GEO) [61],
protein-protein interaction (BioGRID [62], IntAct [63], MINT [64] and MIPS [65]), transcription factor
regulation using binding motifs from JASPAR [66], and chemical and genetic perturbations from
MSigDB [67]. Gene expression data were log-transformed, and the Pearson correlation was computed
for each gene pair, normalized using the Fisher’s z transform, and z-scores discretized into di�erent
bins. Gold standards for tissue-speci�c functional relationships were built using expert curation and
experimentally derived gene annotations from the Gene Ontology. Then, one naive Bayesian classi�er
(using C++ implementations from the Sleipnir library [68]) for each of the 144 tissues was trained
using these gold standards. Finally, these classi�ers were used to estimate the probability of tissue-
speci�c interactions for each gene pair.

k = 2 k = 2 k = kmax

kmax = 10
k = 2 k = 10

kmax

kmax = 2

kmax = 2

kmax k

log(x + 1)



For each pair of genes prioritized in our study using GTEx, we used GIANT through HumanBase to
obtain 1) a predicted gene network for blood (manually selected to match whole blood in GTEx) and 2)
a gene network with an automatically predicted tissue using the method described in [45] and
provided by HumanBase web interfaces/services. Brie�y, the tissue prediction approach trains a
machine learning model using comprehensive transcriptional data with human-curated markers of
di�erent cell lineages (e.g., macrophages) as gold standards. Then, these models are used to predict
other cell lineage-speci�c genes. In addition to reporting this predicted tissue or cell lineage, we
computed the average probability of interaction between all genes in the network retrieved from
GIANT. Following the default procedure used in GIANT, we included the top 15 genes with the highest
probability of interaction with the queried gene pair for each network.

Maximal Information Coe�cient (MIC)

We used the Python package minepy  [69,70] (version 1.2.5) to estimate the MIC coe�cient. In GTEx
v8 (whole blood), we used MICe (an improved implementation of the original MIC introduced in [71])
with the default parameters alpha=0.6 , c=15  and estimator='mic_e' . We used the 
pairwise_distances  function from scikit-learn  [72] to parallelize the computation of MIC on

GTEx. For our computational complexity analyses (see Supplementary Material), we ran the original
MIC (using parameter estimator='mic_approx' ) and MICe ( estimator='mic_e' ).
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Supplementary material

Supplementary Note 1: Comparison with the Maximal Information
Coe�cient (MIC) on gene expression data

We compared all the coe�cients in this study with MIC [24], a popular nonlinear method that can �nd
complex relationships in data, although very computationally intensive [73]. We ran MICe (see
Methods) on all possible pairwise comparisons of our 5,000 highly variable genes from whole blood in
GTEx v8. This took 4 days and 19 hours to �nish (compared with 9 hours for CCC). Then we performed
the analysis on the distribution of coe�cients (the same as in the main text), shown in Figure 6. We
veri�ed that CCC and MIC behave similarly in this dataset, with essentially the same distribution but
only shifted. Figure 6 c shows that these two coe�cients relate almost linearly, and both compare
very similarly with Pearson and Spearman.

a) b)

c)

Figure 6:  Distribution of MIC values on gene expression (GTEx v8, whole blood) and comparison with other
methods. a) Histogram of coe�cient values. b) Corresponding cumulative histogram. The dotted line maps the
coe�cient value that accumulates 70% of gene pairs. c) 2D histogram plot with hexagonal bins between all coe�cients,
where a logarithmic scale was used to color each hexagon.



Supplementary Note 2: Computational complexity of coe�cients

We also compared CCC with the other coe�cients in terms of computational complexity. Although
CCC and MIC might identify similar gene pairs in gene expression data (see here), the use of MIC in
large datasets remains limited due to its very long computation time, despite some
methodological/implementation improvements [69,73,74,75,76]. The original MIC implementation
uses ApproxMaxMI, a computationally demanding heuristic estimator [37]. Recently, a more e�cient
implementation called MICe was proposed [71]. These two MIC estimators are provided by the 
minepy  package [69], a C implementation available for Python. We compared all these coe�cients in

terms of computation time on randomly generated variables of di�erent sizes, which simulates a
scenario of gene expression data with di�erent numbers of conditions. Di�erently from the rest, CCC
allows us to easily parallelize the computation of a single gene pair (see Methods), so we also tested
the cases using 1 and 3 CPU cores. Figure 7 shows the time in seconds in log scale.

Figure 7:  Computational complexity of all correlation coe�cients on simulated data. We simulated
variables/features with varying data sizes (from 100 to a million, -axis). The plot shows the average time in seconds
(log-scale) taken for each coe�cient on ten repetitions (1000 repetitions were performed for data size 100). CCC was run
using 1 and 3 CPU cores. MIC and MICe did not �nish running in a reasonable amount of time for data sizes of 10,000
and 100,000, respectively.

As we already expected, Pearson and Spearman were the fastest, given that they only need to
compute basic summary statistics from the data. For example, Pearson is three orders of magnitude
faster than CCC. Among the nonlinear coe�cients, CCC was faster than the two MIC variations (up to
two orders of magnitude), with the only exception in very small data sizes. The di�erence is important
because both MIC variants were implemented in C [69], a high-performance programming language,
whereas CCC was implemented in Python (optimized with numba ). For a data size of a million, the
multi-core CCC was twice as fast as the single-core CCC. This suggests that new implementations using
more advanced processing units (such as GPUs) are feasible and could make CCC reach speeds closer
to Pearson.
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Tissue-speci�c gene networks with GIANT

Table 1:  Network statistics of six gene pairs shown in Figure 3 b for blood and predicted cell types. Only gene pairs
present in GIANT models are listed. For each gene in the pair (�rst column), the minimum, average and maximum
interaction coe�cients with the other genes in the network are shown.

Interaction con�dence

Blood Predicted cell type

Gene Min. Avg. Max. Cell type Min. Avg. Max.

IFNG 0.19 0.42 0.54
Natural killer cell

0.74 0.90 0.99

SDS 0.18 0.29 0.41 0.65 0.81 0.94

JUN 0.26 0.68 0.97 Mononuclear
phagocyte

0.36 0.73 0.94

APOC1 0.22 0.47 0.77 0.29 0.50 0.80

ZDHHC12 0.05 0.07 0.10
Macrophage

0.03 0.12 0.33

CCL18 0.74 0.79 0.86 0.36 0.70 0.90

RASSF2 0.69 0.77 0.90
Leukocyte

0.66 0.74 0.88

CYTIP 0.74 0.85 0.91 0.76 0.84 0.91

MYOZ1 0.09 0.17 0.37
Skeletal muscle

0.11 0.11 0.12

TNNI2 0.10 0.22 0.44 0.10 0.11 0.12

PYGM 0.02 0.04 0.14
Skeletal muscle

0.01 0.02 0.04

TPM2 0.05 0.56 0.80 0.01 0.28 0.47


