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Abstract

Preprints allow researchers to make their �ndings available to the scienti�c community before they
have undergone peer review. Studies on preprints within bioRxiv have been largely focused on article
metadata and how often these preprints are downloaded, cited, published, and discussed online. A
missing element that has yet to be examined is the language contained within the bioRxiv preprint
repository. We sought to compare and contrast linguistic features within bioRxiv preprints to
published biomedical text as a whole as this is an excellent opportunity to examine how peer review
changes these documents. The most prevalent features that changed appear to be associated with
typesetting and mentions of supplementary sections or additional �les. In addition to text
comparison, we created document embeddings derived from a preprint-trained word2vec model. We
found that these embeddings are able to parse out di�erent scienti�c approaches and concepts, link
unannotated preprint-peer reviewed article pairs, and identify journals that publish linguistically
similar papers to a given preprint. We also used these embeddings to examine factors associated with
the time elapsed between the posting of a �rst preprint and the appearance of a peer reviewed
publication. We found that preprints with more versions posted and more textual changes took longer
to publish. Lastly, we constructed a web application (https://greenelab.github.io/preprint-similarity-
search/) that allows users to identify which journals and articles that are most linguistically similar to a
bioRxiv or medRxiv preprint as well as observe where the preprint would be positioned within a
published article landscape.

Introduction

The dissemination of research �ndings is key to science. Initially, much of this communication
happened orally (1). During the 17th century, the predominant form of communication shifted to
personal letters shared from one scientist to another (1). Scienti�c journals didn’t become a
predominant mode of communication until the 19th and 20th centuries when the �rst journal was
created (1–3). Although scienti�c journals became the primary method of communication, they added
high maintenance costs and long publication times to scienti�c discourse (2,3). Some scientists’
solutions to these issues have been to communicate through preprints, which are scholarly works that
have yet to undergo peer review process (4,5).

Preprints are commonly hosted on online repositories, where users have open and easy access to
these works. Notable repositories include arXiv (6), bioRxiv (7) and medRxiv (8/); however, there are
over 60 di�erent repositories available (9/). The burgeoning uptake of preprints in life sciences has
been examined through research focused on metadata from the bioRxiv repository. For example, life
science preprints are being posted at an increasing rate (10). Furthermore, these preprints are being
rapidly shared on social media, routinely downloaded, and cited (11). Some preprint categories are
shared on social media by both scientists and non-scientists (12). About two-thirds to three-quarters
of preprints are eventually published (13,14) and life science articles that have a corresponding
preprint version are cited and discussed more often than articles without them (15–17). Preprints take
an average of 160 days to be published in the peer-reviewed literature (18), and those with multiple
versions take longer to publish(18).

The rapid uptake of preprints in the life sciences also poses challenges. Preprint repositories receive a
growing number of submissions (19). Linking preprints with their published counterparts is vital to
maintaining scholarly discourse consistency, but this task is challenging to perform manually
(16,20,21). Errors and omissions in linkage result in missing links and consequently erroneous
metadata. Furthermore, repositories based on standard publishing tools are not designed to show
how the textual content of preprints is altered due to the peer review process (19). Certain scientists
have expressed concern that competitors could scoop them by making results available before



publication (19,22). Preprint repositories by de�nition do not perform in-depth peer review, which can
result in posted preprints containing inconsistent results or conclusions (17,20,23,24); however, an
analysis of preprints posted at the beginning of 2020 revealed that over 50% underwent minor
changes in the abstract text as they were published, but over 70% did not change or only had simple
rearrangements to panels and tables (25). Despite a growing emphasis on using preprints to examine
the publishing process within life sciences, how these �ndings relate to the text of all documents in
bioRxiv has yet to be examined.

Textual analysis uses linguistic, statistical, and machine learning techniques to analyze and extract
information from text (26,27). For instance, scientists analyzed linguistic similarities and di�erences of
biomedical corpora [(28);10.1186/1471-2105-9-S3-S6; (29)]. Scientists have provided the community
with a number of tools that aide future text mining systems (30–32) as well as advice on how to train
and test future text processing systems (33–35). Here, we use textual analysis to examine the bioRxiv
repository, placing a particular emphasis on understanding the extent to which full-text research can
address hypotheses derived from the study of metadata alone.

To understand how preprints relate to the traditional publishing ecosystem, we examine the linguistic
similarities and di�erences between preprints and peer-reviewed text and observe how linguistic
features change during the peer review and publishing process. We hypothesize that preprints and
biomedical text will appear to have similar characteristics, especially when controlling for the
di�erential uptake of preprints across �elds. Furthermore, we hypothesize that document
embeddings (36,37) provide a versatile way to disentangle linguistic features along with serving as a
suitable medium for improving preprint repository functionality. We test this hypothesis by producing
a linguistic landscape of bioRxiv preprints, detecting preprints that change substantially during
publication, and identify journals that publish manuscripts that are linguistically similar to a target
preprint. We encapsulate our �ndings through a web app that projects a user-selected preprint onto
this landscape and suggests journals and articles that are linguistically similar. Our work reveals how
linguistically similar and dissimilar preprints are to peer-reviewed text, quanti�es linguistic changes
that occur during the peer review process, and highlights the feasibility of document embeddings
concerning preprint repository functionality and peer review’s e�ect on publication time.

Materials and Methods

Corpora Examined

Text analytics is generally comparative in nature, so we selected three relevant text corpora for
analysis: the BioRxiv corpus, which is the target of the investigation; the PubMedCentral Open Access
corpus, which represents the peer-reviewed biomedical literature; and the New York Times Annotated
Corpus, which is used a representative of general English text.

BioRxiv Corpus

BioRxiv (7) is a repository for life sciences preprints. We downloaded an XML snapshot of this
repository on February 3rd, 2020, from bioRxiv’s Amazon S3 bucket (38). This snapshot contained the
full text and image content of 98,023 preprints. Preprints on bioRxiv are versioned, and in our
snapshot, 26,905 out of 98,023 contained more than one version. When preprints had multiple
versions, we used the latest one unless otherwise noted. Authors submitting preprints to bioRxiv can
select one of twenty-nine di�erent categories and tag the type of article: a new result, con�rmatory
�nding, or contradictory �nding. A few preprints in this snapshot were later withdrawn from bioRxiv;
when withdrawn, their content is replaced with the reason for withdrawal. We encountered a total of
72 withdrawn preprints within our snapshot. After removal, we were left with 97,951 preprints for our
downstream analyses.



PubMed Central Open Access Corpus

PubMed Central (PMC) is a digital archive for the United States National Institute of Health’s Library of
Medicine (NIH/NLM) that contains full text biomedical and life science articles (39). Paper availability
within PMC is mainly dependent on the journal’s participation level (40/). Articles appear in PMC as
either accepted author manuscripts (Green Open Access) or via open access publishing at the journal
(Gold Open Access (41)). Individual journals have the option to fully participate in submitting articles to
PMC, selectively participate sending only a few papers to PMC, only submit papers according to NIH’s
public access policy (42), or not participate at all; however, individual articles published with the CC BY
license may be incorporated. As of September 2019, PMC had 5,725,819 articles available (43/). Out of
these 5 million articles, about 3 million were open access (PMCOA) and available for text processing
systems (31,44). PMC also contains a resource that holds author manuscripts that have already
passed the peer review process (45/). Since these manuscripts have already been peer-reviewed, we
excluded them from our analysis as the scope of our work is focused on examining the beginning and
end of a preprint’s life cycle. We downloaded a snapshot of the PMCOA corpus on January 31st, 2020.
This snapshot contained many types of articles: literature reviews, book reviews, editorials, case
reports, research articles, and more. We used only research articles, which align with the intended
role of bioRxiv, and we refer to these articles as the PMCOA corpus.

The New York Times Annotated Corpus

The New York Times Annotated Corpus (NYTAC) is (46) is a collection of newspaper articles from the
New York Times dating from January 1st, 1987, to June 19th, 2007. This collection contains over 1.8
million articles where 1.5 million of those articles have undergone manual entity tagging by library
scientists (46). We downloaded this collection on August 3rd, 2020, from the Linguistic Data
Consortium (see Software and Data Availability section) and used the entire collection as a negative
control for our corpora comparison analysis.

Mapping bioRxiv preprints to their published counterparts

We used CrossRef (47) to identify bioRxiv preprints linked to a corresponding published article. We
accessed CrossRef on July 7th, 2020, and successfully linked 23,271 preprints to their published
counterparts. Out of those 23,271 preprint-published pairs, only 17,952 pairs had a published version
present within the PMCOA corpus. For our analyses that involved published links, we only focused on
this subset of preprints-published pairs.

Comparing Corpora

We compared the bioRxiv, PMCOA, and NYTAC corpora to assess the similarities and di�erences
between them. We used the NYTAC corpus as a negative control to assess the similarity between two
life sciences repositories compared with non-life sciences text. All corpora contain multiple words that
do not have any meaning (e.g. conjunctions, prepositions, etc.) or occur with a high frequency. These
words are termed stopwords and are often removed to improve text processing pipelines. Along with
stopwords, all corpora contain both words and non-word entities (e.g., numbers or symbols like ),
which we refer to together as tokens to avoid confusion. We calculated the following characteristic
metrics for each corpus: the number of documents, the number of sentences, the total number of
tokens, the number of stopwords, the average length of a document, the average length of a
sentence, the number of negations, the number of coordinating conjunctions, the number of
pronouns and the number of past tense verbs. SpaCy is a lightweight and easy-to-use python package
designed to preprocess and �lter text (48). We used spaCy’s “en_core_web_sm” model (48) (version
2.2.3) to preprocess all corpora and �lter out 326 stopwords using spaCy’s default settings.
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Following that cleaning process, we calculated the frequency of every token across all corpora.
Because many tokens were unique to one set or the other and observed at low frequency, we focused
on the union of the top 0.05% (~100) most frequently occurring tokens within each corpus. We
generated a contingency table for each token in this union and calculated the odds ratio along with
the 95% con�dence interval (49/). We measured corpora similarity by calculating the Kullback–Leibler
(KL) divergence across all corpora along with token enrichment analysis. KL divergence is a metric that
measures the extent to which two distributions di�er from each other. A low value of KL divergence
implicates that two distributions are similar and vice versa for high values. The optimal number of
tokens used to calculate the KL divergence is unknown, so we calculated this metric using a range of
the 100 most frequently occurring tokens between two corpora to the 5000 most frequently occurring
tokens.

Constructing a Document Representation for Life Sciences Text

We sought to build a language model to quantify linguistic similarities of biomedical preprints and
articles. Word2vec is a suite of neural networks designed to model linguistic features of tokens based
on their appearance in the text. These models are trained to either predict a token based on its
sentence context, called a continuous bag of words (CBOW) model, or predict the context based on a
given token, called a skipgram model (36). Through these prediction tasks, both networks learn latent
linguistic features which are helpful for downstream tasks, such as identifying similar tokens. We used
gensim (50) (version 3.8.1) to train a CBOW (36) model over all the main text within each preprint in
the bioRxiv corpus. Determining the best number of dimensions for token embeddings can be a non-
trivial task; however, it has been shown that optimal performance is between 100-1000 dimensions
(51). We chose to train the CBOW model using 300 hidden nodes, a batch size of 10000 tokens, and
for 20 epochs. We set a �xed random seed and used gensim’s default settings for all other
hyperparameters. Once trained, every token present within the CBOW model is associated with a
dense vector representing latent features captured by the network. We used these token vectors to
generate a document representation for every article within the bioRxiv and PMCOA corpora. We used
spaCy to lemmatize each token for each document and then took the average of every lemmatized
token present within the CBOW model and the individual document (37). Any token present within the
document but not in the CBOW model is ignored during this calculation process.

Visualizing and Characterizing Preprint Representations

We sought to visualize the landscape of preprints and determine the extent to which their
representation as document vectors corresponded to author-supplied document labels. We used
principal component analysis (PCA) (52) to project bioRxiv document vectors into a low-dimensional
space. We trained this model using scikit-learn’s (53) implementation of a randomized solver (54) with
a random seed of 100, an output of 50 principal components (PCs), and default settings for all other
hyperparameters. After training the model, every preprint within the bioRxiv corpus receives a score
for each generated PC. We sought to uncover concepts captured within generated PCs and used the
cosine similarity metric to examine these concepts. This metric takes two vectors as input and outputs
a score between -1 (most dissimilar) and 1 (most similar). We used this metric to score the similarity
between all generated PCs and every token within our CBOW model for our use case. We report the
top 100 positive and negative scoring tokens as word clouds. The size of each word corresponds to
the magnitude of similarity, and color represents a positive (orange) or negative (blue) association.

Discovering Unannotated Preprint-Publication Relationships

The bioRxiv maintainers have automated procedures to link preprints to peer-reviewed versions, and
many journals require authors to update preprints with a link to the published version. However, this
automation is primarily based on the exact matching of speci�c preprint attributes. If authors change



the title between a preprint and published version (e.g., (55) and (56)), then this change will prevent
bioRxiv from automatically establishing a link. Furthermore, if the authors do not report the
publication to bioRxiv, the preprint and its corresponding published version are treated as distinct
entities despite representing the same underlying research. We hypothesize that close proximity in
the document embedding space could match preprints with their corresponding published version. If
this �nding holds, we could use this embedding space to �ll in links missed by existing automated
processes. We used the subset of paper-preprint pairs annotated in CrossRef as described above to
calculate the distribution of available preprint to published distances. We calculated this distribution
by taking the Euclidean distance between the preprint’s embedding coordinates and the coordinates
of its corresponding published version. We also calculated a background distribution, which consisted
of the distance between each preprint with an annotated publication and a randomly selected article
from the same journal. We compared both distributions to determine if there was a di�erence
between both groups as a signi�cant di�erence would indicate that this embedding method can parse
preprint-published pairs apart. After comparing the two distributions, we calculated distances
between preprints without a published version link with PMCOA articles that weren’t matched with a
corresponding preprint. We �ltered any potential links with distances greater than the minimum value
of the background distribution as we considered these pairs to be true negatives. Lastly, we binned
the remaining pairs based on percentiles from the annotated pairs distribution at the [0,25th
percentile), [25th percentile, 50th percentile), [50th percentile, 75th percentile), and [75th percentile,
minimum background distance). We randomly sampled 50 articles from each bin and shu�ed these
four sets to produce a list of 200 potential preprint-published pairs with a randomized order. We
supplied these pairs to two co-authors to manually determine if each link between a preprint and a
putative matched version was correct or incorrect. After the curation process, we encountered eight
disagreements between the reviewers. We supplied these pairs to a third scientist, who carefully
reviewed each case and made a �nal decision. Using this curated set, we evaluated the extent to
which distance in the embedding space revealed valid but unannotated links between preprints and
their published versions.

Measuring Time Duration for Preprint Publication Process

Preprints can take varying amounts of time to be published. We sought to measure the time required
for preprints to be published in the peer-reviewed literature and compared this time measurement
across author-selected preprint categories as well as individual preprints. First, we queried bioRxiv’s
application programming interface (API) to obtain the date a preprint was posted onto bioRxiv as well
as the date a preprint was accepted for publication. We did not include preprint matches found by our
paper matching approach (see ‘Discovering Unannotated Preprint-Publication Relationships’). We
measured time elapsed as the di�erence between the date a preprint was �rst posted on bioRxiv and
its publication date. Along with calculating the time elapsed, we also recorded the number of di�erent
preprint versions posted onto bioRxiv.

We used this captured data to apply the Kaplan-Meier estimator (57) via the KaplanMeierFitter
function from the lifelines (58) (version 0.25.6) python package to calculate the half-life of preprints
across all preprint categories within bioRxiv. We considered survival events as preprints that have yet
to be published. We encountered 123 cases where the preprint posting date was subsequent to the
publication date, resulting in a negative time di�erence, as previously reported (59). We removed
these preprints for this analysis as they were incompatible with the rules of the bioRxiv repository.

We measured the textual di�erence between preprints and their corresponding published version
after our half-life calculation by calculating the Euclidean distance for their respective embedding
representation. This metric can be di�cult to understand within the context of textual di�erences, so
we sought to contextualize the meaning of a distance unit. We �rst randomly sampled with
replacement a pair of preprints from the Bioinformatics topic area as this was well represented within
bioRxiv and contains a diverse set of research articles. Next, we calculated the distance between two



preprints 1000 times and reported the mean. We repeated the above procedure using every preprint
within bioRxiv as a whole. These two means serve as normalized benchmarks to compare against as
distance units are only meaningful when compared to other distances within the same space.
Following our contextualization approach, we performed linear regression to model the relationship
between preprint version count with a preprint’s time to publication. We also performed linear
regression to measure the relationship between document embedding distance and a preprint’s time
to publication. For this analysis, we retained preprints with negative time within our linear regression
model, and we observed that these preprints had minimal impact on results. We visualize our version
count regression model as a violin plot and our document embeddings regression model as a square
bin plot.

Building Classi�ers to Detect Linguistically Similar Journal Venues and
Published Articles

Preprints are more likely to be published in journals that publish articles with similar content. We
assessed this claim by building classi�ers based on document and journal representations. First, we
removed all journals that had fewer than 100 papers in the PMC corpus. We held our preprint-
published subset (see above section ‘Mapping bioRxiv preprints to their published counterparts’) and
treated it as a gold standard test set. We used the remainder of the PMCOA corpus for training and
initial evaluation for our models.

Training models to identify which journal publishes similar articles is challenging as not all journals are
the same. Some journals have a publication rate of at most hundreds of papers per year, while others
publish at a rate of at least ten thousand papers per year. Furthermore, some journals focus on
publishing articles within a concentrated topic area, while others cover many dispersive topics.
Therefore, we designed two approaches to account for these characteristics. Our �rst approach
focuses on articles that account for a journal’s variation of publication topics. This approach allows for
topically similar papers to be retrieved independently of their respective journal. Our second
approach is centered on journals to account for varying publication rates. This approach allows more
selective or less popular journals to have equal representation to their high publishing counterparts.

Our article-based approach identi�es most similar manuscripts to the preprint query, and we
evaluated the journals that published these identi�ed manuscripts. We embedded each query article
into the space de�ned by the word2vec model (see above section ‘Constructing a Document
Representation for Life Sciences Text’). Once embedded, we selected manuscripts close to the query
via Euclidean distance in the embedding space. Once identi�ed, we return articles along with journals
that published these identi�ed articles.

We constructed a journal-based approach to accompany the article-based classi�er while accounting
for the overrepresentation of these high publishing frequency journals. We identi�ed the most similar
journals for this approach by constructing a journal representation in the same embedding space. We
computed this representation by taking the average embedding of all published papers within a given
journal. We then projected a query article into the same space and returned journals closest to the
query using the same distance calculation described above.

Both models were constructed using the scikit-learn k-Nearest Neighbors implementation (53) with
the number of neighbors set to 10 as this is an appropriate number for our use case. We consider a
prediction to be a true positive if the correct journal appears within our reported list of neighbors and
evaluate our performance using 10-fold cross-validation on the training set along with test set
evaluation.

Web Application for Discovering Similar Preprints and Journals



We developed a web application that places any bioRxiv or medRxiv preprint into the overall
document landscape and identi�es topically similar papers and journals (similar to (60)). Our
application attempts to download the full text xml version of any preprint hosted on the bioRxiv or
medRxiv server and uses the lxml package (version num) to extract text. If the xml version isn’t
available our application defaults to downloading the pdf version and uses PyMuPDF (61) to extract
text from the pdf. The extracted text is fed into our CBOW model to construct a document embedding
representation. We pass this representation onto our journal and article classi�ers to identify journals
based on the ten closest neighbors of individual papers and journal centroids. We implemented this
search using the scikit-learn implementation of k-d trees. To run it more cost-e�ectively in a cloud
computing environment with limited available memory, we sharded the k-d trees into four trees.

The app provides a visualization of the article’s position within our training data to illustrate the local
publication landscape, We used SAUCIE (62), an autoencoder designed to cluster single-cell RNA-seq
data, to build a two-dimensional embedding space that could be applied to newly generated preprints
without retraining, a limitation of other approaches that we explored for visualizing entities expected
to lie on a nonlinear manifold. We trained this model on document embeddings of PMC articles that
did not contain a matching preprint version. We used the following parameters to train the model: a
hidden size of 2, a learning rate of 0.001, lambda_b of 0, lambda_c of 0.001, and lambda_d of 0.001 for
5000 iterations. When a user requests a new document, we can then project that document onto our
generated two-dimensional space; thereby, allowing the user to see where their preprint falls along
the landscape. We illustrate our recommendations as a shortlist and provide access to our network
visualization at our website (https://greenelab.github.io/preprint-similarity-search/).

Analysis of the Preprints in Motion Collection

Our manuscript describes the large-scale analysis of bioRxiv. Concurrent with our work, another set of
authors performed a detailed curation and analysis of a subset of bioRxiv (25) that was focused on
preprints posted during the initial stages of the COVID-19 pandemic. The curated analysis was
designed to examine preprints at a time of increased readership (63) and includes certain preprints
posted from January 1st, 2020 to April 30th, 2020 (25). We sought to contextualize this subset, which
we term “Preprints in Motion” after the title of the preprint (25), within our global picture of the
bioRxiv preprint landscape. We extracted all preprints from the set reported in Preprints in Motion
(25) and retained any entries in the bioRxiv repository. We manually downloaded the XML version of
these preprints and mapped them to their published counterparts as described above. We used
Pubmed Central’s DOI converter (64/) to map the published article DOIs with their respective PubMed
Central IDs. We retained articles that were included in the PMCOA corpus and performed a token
analysis as described to compare these preprints with their published versions. As above, we
generated document embeddings for every obtained preprint and published article. We projected
these preprint embeddings onto our publication landscape to visually observe the dispersion of this
subset. We performed a time analysis that paralleled our approach for the full set of preprint-
publication pairs to examine relationships between linguistic changes and the time to publication. The
“Preprints in Motion” subset includes recent papers, and the longest time to publish in that set was
195 days; however, our bioRxiv snapshot contains both older preprint-published pairs and many with
publication times longer than this timepoint. The optimum comparison would be to consider only
preprints posted on the same days as preprints with the “Preprints in Motion” collection. However,
based on our results examining publication rate over time, these preprints may not have made it
entirely through the publication process. We performed a secondary analysis to control for the time
since posting, where we �ltered the bioRxiv snapshot to only contain publication pairs with
publication time of less than or equal to 195 days.

Results

https://greenelab.github.io/preprint-similarity-search/


Comparing bioRxiv to other corpora

bioRxiv Metadata Statistics

The preprint landscape is rapidly changing, and the number of bioRxiv preprints in our data download
(71,118) was nearly double that of a recent study that reported on a snapshot with 37,648 preprints
(13). Because the rate of change is rapid, we �rst analyzed category data and compared our results
with previous �ndings. As in previous reports (13), neuroscience remains the most common category
of preprints, followed by bioinformatics (Supplemental Figure S2). Microbiology, which was �fth in the
most recent report (13), has now surpassed evolutionary biology and genomics to move into third.
When authors upload their preprints, they select from three result category types: new results,
con�rmatory results, or contradictory results. We found that nearly all preprints (97.5%) were
categorized as new results, consistent with reports on a smaller set (65). The results taken together
suggest that while bioRxiv has experienced dramatic growth, how it is being used appears to have
remained consistent in recent years.

Global analysis reveals similarities and di�erences between bioRxiv and
PMC

Table 1:  Summary statistics for the bioRxiv, PMC, and NYTAC corpora.

Metric bioRxiv PMC NYTAC

document count 71,118 1,977,647 1,855,658

sentence count 22,195,739 480,489,811 72,171,037

token count 420,969,930 8,597,101,167 1,218,673,384

stopword count 158,429,441 3,153,077,263 559,391,073

avg. document length 312.10 242.96 38.89

avg. sentence length 22.71 21.46 19.89

negatives 1,148,382 24,928,801 7,272,401

coordinating conjunctions 14,295,736 307,082,313 38,730,053

coordinating conjunctions% 3.40% 3.57% 3.18%

pronouns 4,604,432 74,994,125 46,712,553

pronouns% 1.09% 0.87% 3.83%

passives 15,012,441 342,407,363 19,472,053

passive% 3.57% 3.98% 1.60%



Figure 1:  A. The Kullback–Leibler divergence measures the extent to which the distributions, not speci�c tokens, di�er
from each other. The token distribution of bioRxiv and PMC corpora is more similar than these biomedical corpora are
to the NYTAC one. B. The signi�cant di�erences in token frequencies for the corpora appear to be driven by the �elds
with the highest uptake of bioRxiv, as terms from neuroscience and genomics are relatively more abundant in bioRxiv.
We plotted the 95% con�dence interval for each reported token. C. Of the tokens that di�er between bioRxiv and PMC,
the most abundant in bioRxiv are “et” and “al” while the most abundant in PMC is “study.” D. The signi�cant di�erences
in token frequencies for preprints and their corresponding published version often appear to be associated with
typesetting and supplementary or additional materials. We plotted the 95% con�dence interval for each reported token.
E. The tokens with the largest absolute di�erences in abundance appear to be stylistic. Data for the information
depicted in this �gure are available at
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-one.
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Documents within bioRxiv were slightly longer than those within PMCOA, but both were much longer
than those from the control (NYTAC) (Table 1). The average sentence length, the fraction of pronouns,
and the use of the passive voice were all more similar between bioRxiv and PMC than they were to
NYTAC(Table 1). The Kullback–Leibler (KL) divergence of term frequency distributions between bioRxiv
and PMCOA were low, especially among the top few hundred tokens (Figure 1A). As more tokens were
incorporated, the KL divergence started to increase but remained much lower than the biomedical
corpora compared against NYTAC. We provide a listing of the top 100 most frequently occurring
tokens from all three corpora in our supplement (Supplemental Table S4). These �ndings support our
notion that bioRxiv is linguistically similar to the PMCOA repository.

The terms “neurons”, “genome”, and “genetic”, which are common in genomics and neuroscience,
were more common in bioRxiv than PMCOA while others associated with clinical research, such as
“clinical” “patients” and “treatment” were more common in PMCOA (Figure 1B, 1C and Supplementary
Figure S3). When controlling for the di�erences in the body of documents to identify textual changes
associated with the publication process, we found that tokens such as “et” “al” were enriched for
bioRxiv while “ ”, “–” were enriched for PMCOA (Figure 1D, 1E). When removing special and single-
character tokens, data availability and presentation related terms “�e”, “supplementary”, “�g”
appeared enriched for published articles, and research related terms “mice”, “activity”, “neurons”
appeared enriched for bioRxiv (Supplementary Figure S4). Furthermore, we found that speci�c
changes appeared to be related to journal styles: “�gure” was more common in bioRxiv while “�g” was
relatively more common in PMCOA. Other changes appeared to be associated with an increasing
reference to content external to the manuscript itself: the tokens “supplementary”, “additional” and
“�le” were all more common in PMCOA than bioRxiv, suggesting that journals are not simply replacing
one token with another but that there are more mentions of such content after peer review.

These results suggest that the text structure within preprints on bioRxiv is similar to published articles
within PMCOA. The di�erences in uptake across �elds are supported by the authors’ categorization of
their articles and the text within the articles themselves. At the level of individual manuscripts, the
most change terms appear to be associated with typesetting, journal style, and an increasing reliance
on additional materials after peer review.

Following our analysis of tokens, we examined the principal components of document embeddings
derived from bioRxiv. We found that the top principal components separated methodological
approaches and research �elds. Preprints from certain topic areas that spanned approaches from
informatics-related to cell biology could be distinguished using these principal components (see
Supplementary Results).

Document embedding similarities reveal unannotated preprint-
publication pairs

±



Figure 2:  A. Preprints are closer in document embedding space to their corresponding peer-reviewed publication than
they are to random papers published in the same journal. B. Potential preprint-publication pairs that are unannotated
but within the 50th percentile of all preprint-publication pairs in the document embedding space are likely to represent
true preprint-publication pairs. We depict the fraction of true positives over the total number of pairs in each bin.
Accuracy is derived from the curation of a randomized list of 200 potential pairs (50 per quantile) performed in duplicate
with a third rater used in the case of disagreement. C. Most preprints are eventually published. We show the publication
rate of preprints since bioRxiv �rst started. The x-axis represents months since bioRxiv started, and the y-axis
represents the proportion of preprints published given the month they were posted. The light blue line represents the
publication rate previously estimated by Abdill et al. (13). The dark blue line represents the updated publication rate
using only CrossRef-derived annotations, while the dark green line includes annotations derived from our embedding
space approach. The horizontal lines represent the overall proportion of preprints published as of the time of the
annotated snapshot. The dashed horizontal line represents the overall proportion published preprints for preprints
posted before 2019. Data for the information depicted in this �gure are available at
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-two.

Distances between preprints and their corresponding published versions were nearly always lower
than preprints paired with a random article published in the same journal (Figure 2A). This suggested
that embedding distances may predict the published form of preprints. We directly tested this by
selecting low-distance but unannotated preprint-publication pairs and curating the extent to which
they represented matching documents. Approximately 98% of our 200 pairs with an embedding
distance in the 0-25th and 25th-50th percentile bins were successfully matched with their published
counterpart (Figure 2B). These two bins contained 1,542 preprint-article pairs, suggesting that many
preprints may have been published but not previously connected with their published versions. There
is a particular enrichment for preprints published but unlinked within the 2017-2018 interval (Figure
2C). We expected a higher proportion of such preprints before 2019 (many of which may not have
been published yet); however, observing relatively few missed annotations before 2017 was against
our expectations. There are several possible explanations for this increasing fraction of missed
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annotations. As the number of preprints posted on bioRxiv grows, it may be harder for bioRxiv to
establish a link between preprints and their published counterparts simply due to the scale of the
challenge. It is possible that the set of authors participating in the preprint ecosystem is changing and
that new participants may be less likely to report missed publications to bioRxiv. Finally, as familiarity
with preprinting grows, it is possible that authors are posting preprints earlier in the process and that
metadata �elds that bioRxiv uses to establish a link may be less stable.

Preprints with more versions or more text changes relative to their
published counterpart took longer to publish

Figure 3:  A. Author-selected categories were associated with modest di�erences in the median time to publish. Author-
selected preprint categories are shown on the y-axis, while the x-axis shows the median time-to-publish for each
category. Error bars represent 95% con�dence intervals for each median measurement. B. Preprints with more versions
were associated with a longer time to publish. The x-axis shows the number of versions of a preprint posted on bioRxiv.
The y-axis indicates the number of days that elapsed between the �rst version of a preprint posted on bioRxiv and the
date at which the peer-reviewed publication appeared. The density of observations is depicted in the violin plot with an
embedded boxplot. C. Preprints with more substantial text changes took longer to be published. The x-axis shows the
Euclidean distance between document representations of the �rst version of a preprint and its peer-reviewed form. The
y-axis shows the number of days elapsed between the �rst version of a preprint posted on bioRxiv and when a preprint
is published. The color bar on the right represents the density of each hexbin in this plot, where more dense regions are
shown in a brighter color. Data for the information depicted in this �gure are available at
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-three.

The process of peer review includes several steps, which take variable amounts of time (66), and we
sought to measure if there is a di�erence in publication time between author-selected categories of
preprints (Figure 3A). Of the most abundant preprint categories microbiology was the fastest to
publish (140 days, (137, 145 days) [95% CI]) and genomics was the slowest (190 days, (185, 195 days)
[95% CI]) (Figure 3A). We did observe category-speci�c di�erences; however, these di�erences were
generally modest, suggesting that the peer review process did not di�er dramatically between
preprint categories. One exception was the Scienti�c Communication and Education category, which
took substantially longer to be peer-reviewed and published (373 days, (373, 398 days) [95% CI]). This
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hints that there may be di�erences in the publication or peer review process or culture that apply to
preprints in this category.

Examining peer review’s e�ect on individual preprints, we found a positive correlation between
preprints with multiple versions and the time elapsed until publication (Figure 3B). Every additional
preprint version was associated with an increase of 51 days before a preprint was published. This time
duration seems broadly compatible with the amount of time it would take to receive reviews and
revise a manuscript, suggesting that many authors may be updating their preprints in response to
peer reviews or other external feedback. The embedding space allows us to compare preprint and
published documents to determine if the level of change that documents undergo relates to the time
it takes them to be published. Distances in this space are arbitrary and must be compared to
reference distances. We found that the average distance of two randomly selected papers from the
bioinformatics category was 4.470, while the average distance of two randomly selected papers from
bioRxiv was 5.343. Preprints with large embedding space distances from their corresponding peer-
reviewed publication took longer to publish (Figure 3C): each additional unit of distance corresponded
to roughly forty-three additional days.

Overall, our �ndings support a model where preprints are reviewed multiple times or require more
extensive revisions take longer to publish.

Preprints with similar document embeddings share publication
venues

We developed an online application that returns a listing of published papers and journals closest to a
query preprint in document embedding space. This application uses two k-nearest neighbor classi�ers
that achieved better performance than our baseline model (Supplemental Figure S5) to identify these
entities. Users supply our app with digital object identi�ers (DOIs) from bioRxiv or medRxiv, and the
corresponding preprint is downloaded from the repository. Next, the preprint’s PDF is converted to
text, and this text is used to construct a document embedding representation. This representation is
supplied to our classi�ers to generate a listing of the ten papers and journals with the most similar
representations in the embedding space (Figures 4A, 4B and 4C). Furthermore, the user-requested
preprint’s location in this embedding space is then displayed on our interactive map, and users can
select regions to identify the terms most associated with those regions (Figures 4D and 4E). Users can
also explore the terms associated with the top 50 PCs derived from the document embeddings, and
those PCs vary across the document landscape. You can access this application using the following url:
https://greenelab.github.io/preprint-similarity-search/

https://greenelab.github.io/preprint-similarity-search/


Figure 4:  The preprint-similarity-search app work�ow allows users to examine where an individual preprint falls in the
overall document landscape. A. Starting with the home screen, users can paste in a bioRxiv or medRxiv DOI, which
sends a request to bioRxiv or medRxiv. Next, the app preprocesses the requested preprint and returns a listing of (B)
the top ten most similar papers and (C) the ten closest journals. D. The app also displays the location of the query
preprint in PMC. E. Users can select a square within the landscape to examine statistics associated with the square,
including the top journals by article count in that square and the odds ratio of tokens.

Contextualizing the Preprints in Motion Collection



Figure 5:  The Preprints in Motion Collection results are similar to all preprint results, except that their time to
publication was independent of the number of preprint versions and amount of linguistic change. A. Tokens that
di�ered included those associated with typesetting and those related to the nomenclature of the virus that causes
COVID-19. Error bars show 95% con�dence intervals for each token. B. Of the tokens that di�er between Preprints in
Motion and their published counterparts, the most abundant were associated with the nomenclature of the virus. C.
The Preprints in Motion collection fall across the landscape of PMCOA with respect to linguistic properties. This square
bin plot depicts the binning of all published papers within the PMCOA corpus. High-density regions are depicted in
yellow, while low-density regions are in dark blue. Red dots represent the Preprints in Motion Collection. D. The
Preprints in Motion collection were published faster than other bioRxiv preprints, and the number of versions was not
associated with an increase in time to publication. The x-axis shows the number of versions of a preprint posted on
bioRxiv. The y-axis indicates the number of days that elapsed between the �rst version of a preprint posted on bioRxiv
and the date at which the peer-reviewed publication appeared. The density of observations is depicted in the violin plot



with an embedded boxplot. The red dots and red regression line represent Preprints in Motion. E. The Preprints in
Motion collection were published faster than other bioRxiv preprints, and no dependence between the amount of
linguistic change and time to publish was observed. The x-axis shows the Euclidean distance between document
representations of the �rst version of a preprint and its peer-reviewed form. The y-axis shows the number of days
elapsed between the �rst version of a preprint posted on bioRxiv and when a preprint is published. The color bar on the
right represents the density of each hexbin in this plot, where more dense regions are shown in a brighter color. The red
dots and red regression line represent Preprints in Motion. Data for the information depicted in this �gure are available
at https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-�ve.

The Preprints in Motion collection included a set of preprints posted during the �rst four months of
2020. We examined the extent to which preprints in this set were representative of the patterns that
we identi�ed from our analysis on all of bioRxiv. As with all of bioRxiv, typesetting tokens changed
between preprints and their paired publications. Our token-level analysis identi�ed certain patterns
consistent with our �ndings across bioRxiv (Figure 5A and 5B). However, in this set, we also observe
changes likely associated with the fast-moving nature of COVID-19 research: the token “2019-ncov”
became less frequently represented while “sars” and “cov-2” became more represented, likely due to a
shift in nomenclature from “2019-nCoV” to “SARS-CoV-2”. The Preprints in Motion were not strongly
colocalized in the linguistic landscape, suggesting that the collection covers a diverse set of research
approaches (Figure 5C). Preprints in this collection were published faster than the broader set of
bioRxiv preprints (Figure 5D and 5E). We see the same trend when �ltering the broader bioRxiv set to
only contain preprints published within the same timeframe as this collection (Supplemental Figures
S6A and S6B). The relationship between time to publication and the number of versions (Figure 5D
and Supplemental Figure S6A) and the relationship between time to publication and the amount of
linguistic change (Figure 5E and Supplemental Figure S6B) were both lost in the Preprints in Motion
set. Our �ndings suggest that Preprints in Motion changed during publication in ways aligned with
changes in the full preprint set but that peer review was accelerated in ways that broke the time
dependencies observed with the full bioRxiv set.

Discussion and Conclusions

BioRxiv is a constantly growing repository that contains life science preprints. Over 77% of bioRxiv
preprints with a corresponding publication in our snapshot were successfully detected within Pubmed
Central’s Open Access Corpus (PMCOA). This suggests that most work from groups participating in the
preprint ecosystem is now available in �nal form for literature mining and other applications. Most
research on bioRxiv preprints has examined their metadata; we examine the text content as well.
Throughout this work, we sought to analyze the language within these preprints and understand how
it changes in response to peer review.

Our global corpora analysis found that writing within bioRxiv is consistent with the biomedical
literature in the PMCOA repository, suggesting that bioRxiv is linguistically similar to PMCOA. Token-
level analyses between bioRxiv and PMCOA suggested that research �elds drive signi�cant
di�erences; e.g., more patient-related research is prevalent in PMCOA than bioRxiv. This observation
is expected as preprints focused on medicine are supported by the complementary medRxiv
repository (8/). Token-level analyses for preprints and their corresponding published version suggest
that peer review may focus on data availability and incorporating extra sections for published papers;
however, future studies are needed to ascertain individual token level changes as preprints venture
through the publication process. One future avenue of research could examine the di�erences
between only preprints and accepted author manuscripts within Pubmed Central to identify changes
prior to journal publication.

Document embeddings are a versatile way to examine language contained within preprints,
understanding peer review’s e�ect on preprints, and provide extra functionality for preprint
repositories. Our approach to generate document embeddings was focused on interpretability
instead of predictive performance; however, using more advanced strategies to generate document
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vectors such as Doc2Vec (37) or BERT (67) should increase predictive performance. Examining
linguistic variance within document embeddings of life science preprints revealed that the largest
source of variability was informatics. This observation bisects the majority of life science research
categories that have integrated preprints within their publication work�ow. This embedding space
could also be used to quantify sentiment trends or other linguistic features. Furthermore,
methodologies for uncovering latent scienti�c knowledge (68) may be applicable in this embedding
space.

Preprints are typically linked with their published articles via bioRxiv manually establishing links or
authors self-reporting that their preprint has been published; however, gaps can occur as preprints
change their appearance through multiple versions or authors do not notify bioRxiv. Our work
suggests that document embeddings can help �ll in missing links within bioRxiv. 
Furthermore, our analysis reveals that the publication rate for preprints is higher than previously
estimated, even though our analysis can only account for published open access papers. Our results
raise the lower bound of the total preprint publication fraction; however, the true fraction is
necessarily higher. Future work, especially that which aims to assess the fraction of preprints that are
eventually published, should account for the possibility of missed annotations.

Preprints take a variable amount of time to become published, and we examined factors that
in�uence a preprint’s time to publication. Our half-life analysis on preprint categories revealed that
preprints in most bioRxiv categories take similar amounts of time to be published. An apparent
exception is the scienti�c communication and education category, which contained preprints that
took much longer to publish. Regarding individual preprints, each new version adds several weeks to
a preprints time to publication, which is roughly aligned with authors making changes after a round of
peer review; furthermore, preprints that undergo substantial changes take longer to publish. Overall,
these results illustrate that bioRxiv is a practical resource for obtaining insight into the peer-review
process.

Lastly, we found that document embeddings were associated with the eventual journal at which the
work was published. We trained two machine learning models to identify which journals publish
linguistically similar papers towards a query preprint. Our models achieved a considerably higher fold
change over the baseline model, so we constructed a web application that makes our models
available to the public and returns a list of the papers and journals that are linguistically similar to a
bioRxiv or medRxiv preprint.

Software and Data Availability

An online version of this manuscript is available under a Creative Commons Attribution License at
https://greenelab.github.io/annorxiver_manuscript/. Source for the research portions of this project is
dual licensed under the BSD 3-Clause and Creative Commons Public Domain Dedication Licenses at
https://github.com/greenelab/annorxiver. All corresponding data for every �gure in this manuscript is
available at https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md. The
preprint similarity search website can be found at https://greenelab.github.io/preprint-similarity-
search/, and code for the website is available under a BSD-2-Clause Plus Patent License at
https://github.com/greenelab/preprint-similarity-search. Full text access for the bioRxiv repository is
available at https://www.biorxiv.org/tdm. Access to PubMed Central’s Open Access subset is available
on NCBI’s FTP server at https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/. New York Times Annotated
Corpus (NYTAC) can be accessed from the Linguistic Data Consortium at
https://catalog.ldc.upenn.edu/LDC2008T19 where there may be a $150 to $300 fee depending on
membership status.
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Figure S1:  A. Principal components (PC) analysis of bioRxiv word2vec embeddings groups documents based on author-
selected categories. We visualized documents from key categories on a scatterplot for the �rst two PCs. The �rst PC
separated cell biology from informatics-related �elds, and the second PC separated bioinformatics from neuroscience
�elds. B. A word cloud visualization of PC1. Each word cloud depicts the cosine similarity score between tokens and the
�rst PC. Tokens in orange were most similar to the PC’s positive direction, while tokens in blue were most similar to the
PC’s negative direction. The size of each token indicates the magnitude of the similarity. C. A word cloud visualization of
PC2, which separated bioinformatics from neuroscience. Similar to the �rst PC, tokens in orange were most similar to
the PC’s positive direction, while tokens in blue were most similar to the PC’s negative direction. The size of each token
indicates the magnitude of the similarity. D. Examining PC1 values for each article by category created a continuum from
informatics-related �elds on the top through cell biology on the bottom. Speci�c article categories (neuroscience,
genetics) were spread throughout PC1 values. E. Examining PC2 values for each article by category revealed �elds like
genomics, bioinformatics, and genetics on the top and neuroscience and behavior on the bottom. Data for the
information depicted in this �gure are available at
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-s1.

https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s1


Document embeddings provide a means to categorize the language of documents in a way that takes
into account the similarities between terms (37,69,70). We found that the �rst two PCs separated
articles from di�erent author-selected categories (Supplementary Figure S1A). Certain neuroscience
papers appeared to be more associated with the cellular biology direction of PC1, while others
seemed to be more associated with the informatics-related direction (Supplementary Figure S1A). This
suggests that the concepts captured by PCs were not exclusively related to their �eld.

Visualizing token-PC similarity revealed tokens associated with certain research approaches
(Supplementary Figures S1B and S1C). Token association of PC1 shows the separation of cell biology
and informatics-related �elds through tokens: “empirical”, “estimates” and “statistics” depicted in
orange and “cultured” and “overexpressing” shown in blue (Supplementary Figure S1B and
Supplementary Table S2). Association for PC2 shows the separation of bioinformatics and
neuroscience via tokens: “genomic”, “genome” and “genomes” depicted in orange and “evoked”,
“stimulus” and “stimulation” shown in blue (Supplementary Figure S1C and Supplementary Table S3).

Examining the value for PC1 across all author-selected categories revealed an ordering of �elds from
cell biology to informatics-related disciplines (Supplementary Figure S1D). These results suggest that a
primary driver of the variability within the language used in bioRxiv could be the divide between
informatics and cell biology approaches. A similar analysis for PC2 suggested that neuroscience and
bioinformatics present a similar language continuum (Supplementary Figure S1E). This result supports
the notion that bioRxiv contains an in�ux of neuroscience and bioinformatics-related research results.
For both of the top two PCs, the submitter-selected category of systems biology preprints was near
the middle of the distribution and had a relatively large interquartile range when compared with other
categories (Supplementary Figures S1D and S1E), suggesting that systems biology is a broader
sub�eld containing both informatics and cellular biology approaches.

Examining the top �ve highest-scoring and bottom �ve lowest-scoring systems biology preprints along
PC1 reinforces its dichotomous theme (Supplementary Table S1). Preprints with the highest values
(71–75) included software packages, machine learning analyses, and other computational biology
manuscripts, while preprints with the lowest values (76–80) were focused on cellular signaling and
protein activity. We provide the rest of our 50 generated PCs in our online repository (see Software
and Data Availability).

Table S1:  PC1 divided the author-selected category of systems biology preprints along an axis from computational to
molecular approaches.

Title [citation] PC1 License Figure Thumbnail

Conditional Robust Calibration (CRC): a new
computational Bayesian methodology for
model parameters estimation and
identi�ability analysis (71)

4.522818390064091 None

FPtool a software tool to obtain in silico
genotype-phenotype signatures and
�ngerprints based on massive model
simulations (72)

4.348956760251298 CC-BY



Title [citation] PC1 License Figure Thumbnail

GpABC: a Julia package for approximate
Bayesian computation with Gaussian process
emulation (73)

4.259104249060651 CC-BY-NC-ND

Notions of similarity for computational biology
models (74) 4.079855550647664 CC-BY-NC-ND

SBpipe: a collection of pipelines for
automating repetitive simulation and analysis
tasks (75)

4.022240241143516 CC-BY-NC-ND

Bromodomain inhibition reveals FGF15/19 as a
target of epigenetic regulation and metabolic
control (76)

-3.4783803547922414 None

Inhibition of Bruton’s tyrosine kinase reduces
NF-kB and NLRP3 in�ammasome activity
preventing insulin resistance and
microvascular disease (77)

-3.6926161167521476 None

Spatiotemporal proteomics uncovers
cathepsin-dependent host cell death during
bacterial infection (78)

-3.728443135960558 CC-BY-ND



Title [citation] PC1 License Figure Thumbnail

NADPH consumption by L-cystine reduction
creates a metabolic vulnerability upon glucose
deprivation (79)

-3.7363965062637288 None

AKT but not MYC promotes reactive oxygen
species-mediated cell death in oxidative
culture (80)

-3.8769231933681176 None

Table S2:  Top and bottom �ve cosine similarity scores between tokens and the PC1 axis.

Cosine Similarity (PC1, word) word

0.6399154807185836 empirical

0.5995356000266072 estimates

0.5918321530159384 choice

0.5905550757923625 statistics

0.5832932491448216 performance

0.5803836474390357 accuracy

0.5757250459195589 weighting

0.5753027342288192 estimation

0.5730092178610916 uncertainty

0.5720493442813257 task

-0.4484093198386865 abrogated

-0.4490583645152233 transfected

-0.4500847285921068 incubating

-0.4531550791501111 inhibited

-0.4585422153514687 co-incubated

-0.4774721756292901 pre-incubated

-0.4793057689825842 overexpressing

-0.4839313193713342 puri�ed

-0.4869885872803974 incubated

-0.5040798110023075 cultured

Table S3:  Top and bottom �ve cosine similarity scores between tokens and the PC2 axis.

Cosine Similarity (PC2, word) word



Cosine Similarity (PC2, word) word

0.65930201597598 genomic

0.6333515216782134 genome

0.5974018685580009 gene

0.5796531207938461 genomes

0.5353687686155728 annotation

0.5310140161149529 sequencing

0.5197350376908197 sequencesM.

0.5181781615670665 genome,

0.5168781637087506 bioinformatic

0.513853407439108 WGS

-0.4589201401582101 duration

-0.4690482252758019 stimuli

-0.4712875761979691 amplitudes

-0.4772723570301678 contralateral

-0.4813219679071856 stimulation:

-0.4946709932017581 delay

-0.5111990014804086 stimulus

-0.5251288188682695 amplitude

-0.543586881182879 stimulation

-0.5467022203294039 evoked
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Figure S2:  Neuroscience and bioinformatics are the two most common author-selected topics for bioRxiv preprints.
Data for the information depicted in this �gure are available at
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-s2.

Table S4:  The top 100 frequently occurring tokens across our three corpora.

bioRxiv Tokens PMCOA Tokens NYTAC Tokens

‘et’ ‘\\u2009’ ‘said’

‘al’ ‘\xa0’ ‘mr.’

‘cell’ ‘\t\t\t\t’ ’ ’

‘cells’ ‘et’ ‘–’

‘1’ ‘1’ ‘new’

‘di�erent’ ‘cells’ ‘new’

‘2’ ‘al’ ‘like’

‘high’ ‘cell’ ‘year’

‘genes’ ‘patients’ ‘years’

‘gene’ ‘study’ ‘united’

‘3’ ‘2’ ‘ms.’

‘speci�c’ ‘di�erent’ ‘today’

‘�gure’ ‘high’ ‘york’

‘single’ ‘3’ ‘old’

‘non’ ‘\\u2013’ ‘american’

‘5’ ‘signi�cant’ ‘yesterday’

‘\\u201d’ ‘10’ ‘time’

‘\\u201c’ ‘5’ ‘lead’

‘data’ ‘signi�cantly’ ‘people’

‘10’ ‘group’ ‘dr.’

‘4’ ‘4’ ‘years’

‘signi�cant’ ‘non’ ‘york’

‘\\u2019’ ‘compared’ ‘week’

‘found’ ‘\\u201c’ ‘o�cials’

‘protein’ ‘\\u201d’ ‘ago’

‘model’ ‘found’ ‘including’

‘performed’ ‘performed’ ‘10’

‘�gure’ ‘speci�c’ ‘people’

‘analysis’ ‘respectively’ ‘high’

‘study’ ‘\\u200a’ ‘john’

‘genetic’ ‘showed’ ‘public’

‘signi�cantly’ ‘analysis’ ‘good’

‘species’ ‘including’ ‘political’

https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s2


bioRxiv Tokens PMCOA Tokens NYTAC Tokens

‘low’ ‘low’ ‘1’

‘human’ ‘higher’ ‘said’

‘time’ ‘clinical’ ‘president’

‘including’ ‘results’ ‘year’

‘respectively’ ‘groups’ ‘national’

‘time’ ‘shown’ ‘second’

‘compared’ ‘time’ ‘million’

‘previously’ ‘\xb0’ ‘university’

‘results’ ‘total’ ‘recent’

‘shown’ ‘treatment’ ‘small’

‘�g’ ‘protein’ ‘percent’

‘multiple’ ‘additional’ ‘2’

‘large’ ‘studies’ ‘long’

‘similar’ ‘genes’ ‘far’

‘\\u2013’ ‘positive’ ‘big’

‘higher’ ‘�gure’ ‘major’

‘expression’ ‘cells’ ‘later’

‘expression’ ‘gene’ ‘west’

‘samples’ ‘data’ ‘great’

‘i.e.’ ‘anti’ ‘30’

‘�g’ ‘previous’ ‘little’

‘individual’ ‘data’ ‘million’

‘\xb0’ ‘addition’ ‘3’

‘dna’ ‘human’ ‘mrs.’

‘average’ ‘health’ ‘states’

‘supplementary’ ‘observed’ ‘says’

‘previous’ ‘according’ ‘according’

‘total’ ‘single’ ‘late’

‘showed’ ‘reported’ ‘young’

‘data’ ‘previously’ ‘away’

‘observed’ ‘mice’ ‘life’

‘functional’ ‘20’ ‘american’

‘number’ ‘\\u2003’ ‘month’

‘based’ ‘6’ ‘large’

‘\\u2018’ ‘c’ ‘company’

‘small’ ‘study’ ‘way’

‘cells’ ‘control’ ‘black’



bioRxiv Tokens PMCOA Tokens NYTAC Tokens

‘positive’ ‘similar’ ‘early’

‘conditions’ ‘studies’ ‘east’

‘20’ ‘expression’ ‘real’

‘data’ ‘data’ ‘3’

‘regions’ ‘time’ ‘11’

‘data’ ‘30’ ‘state’

‘proteins’ ‘�g’ ‘20’

‘new’ ‘95’ ‘world’

‘mice’ ‘\\u2019’ ‘net’

‘relative’ ‘model’ ‘j.’

‘addition’ ‘levels’ ‘street’

‘6’ ‘primary’ ‘end’

‘neurons’ ‘samples’ ‘think’

‘studies’ ‘large’ ‘day’

‘c’ ‘small’ ‘long’

‘cells’ ‘lower’ ‘state’

‘100’ ’ ’ ‘david’

‘function’ ‘increased’ ‘best’

‘activity’ ‘100’ ‘robert’

‘highly’ ‘patients’ ‘local’

‘experimental’ ‘based’ ‘city’

‘standard’ ‘�gure’ ‘million’

‘30’ ‘blood’ ‘5’

‘levels’ ‘50’ ‘earns’

‘brain’ ‘e�ect’ ‘st.’

‘rna’ ‘normal’ ‘president’

‘models’ ‘standard’ ‘world’

‘identi�ed’ ‘conditions’ ‘nearly’

‘binding’ ‘level’ ‘4’

‘50’ ‘important’ ‘home’



Figure S3:  A. The signi�cant di�erences in token frequencies for the corpora appear to be driven by the �elds with the
highest uptake of bioRxiv, as terms from neuroscience and genomics are relatively more abundant in bioRxiv. We
plotted the 95% con�dence interval for each reported token. B. Of the tokens that di�er between bioRxiv and PMC, the
most abundant in bioRxiv are “gene”, “genes” and “model” while the most abundant in PMC is “study.” Data for the
information depicted in this �gure are available at
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-s3.

Figure S4:  A. The signi�cant di�erences in token frequencies for preprints and their corresponding published version
often appear to be associated with data availability and supplementary or additional materials. We plotted the 95%
con�dence interval for each reported token. B. The tokens with the largest absolute di�erences in abundance appear
related to scienti�c �gures and data availability. Data for the information depicted in this �gure are available at
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-s4.

https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s3
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s4


Figure S5:  Both classi�ers outperform the randomized baseline when predicting a paper’s journal endpoint. This
bargraph shows each model’s accuracy in respect to predicting the training and test set. Data for the information
depicted in this �gure are available at
https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-s5.

Figure S6:  A. The Preprints in Motion were published faster than other bioRxiv preprints, and the number of versions
was not associated with an increase in time to publication. The x-axis shows the number of versions of a preprint posted
on bioRxiv. The y-axis indicates the number of days that elapsed between the �rst version of a preprint posted on
bioRxiv and the date at which the peer-reviewed publication appeared. The density of observations is depicted in the
violin plot with an embedded boxplot. The red dots and red regression line represent Preprints in Motion. B. The
Preprints in Motion collection were published faster than other bioRxiv preprints, and no dependence between the
amount of linguistic change and time to publish was observed. The x-axis shows the Euclidean distance between
document representations of the �rst version of a preprint and its peer-reviewed form. The y-axis shows the number of
days elapsed between the �rst version of a preprint posted on bioRxiv and when a preprint is published. The color bar

https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s5


on the right represents the density of each hexbin in this plot, where more dense regions are shown in a brighter color.
The red dots and red regression line represent Preprints in Motion. Data for the information depicted in this �gure are
available at https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#�gure-s6.

Response to Reviewers
Reviewer #1

[identi�es himself as Ross Mounce]

This manuscript ‘Linguistic Analysis of the bioRxiv Preprint Landscape’ presents an analysis of
bioRxiv fulltexts and metadata, relative to journal-published versions of the same preprints (n=
17,952 pairs), and the New York Times Annotated Corpus.

It’s an interesting manuscript worthy of publication in PLOS Biology after a few relatively minor
revisions.

I have left many comments directly on the manuscript via the dedicated manuscript website, using
public Hypothes.is annotations: https://greenelab.github.io/annorxiver_manuscript/

I incorporate some but not all of these comments into this formal review supplied to the journal
(PLOS Biology) who invited me to review this manuscript.

Unsurprisingly, biorxiv preprints and journal-published versions of biorxiv preprints are found to
be linguistically di�erent to the New York Times Annotated Corpus e.g. in average document length
and to a lesser degree in average sentence length, and % in passive voice.

Luckily there are plenty more actually interesting results reported in this manuscript, not least that
of 23,271 preprint-published pairs, 17,952 of those pairs (>77%) had a published version present
within the PMCOA corpus. I don’t think the authors quite realise the signi�cance of this result. 77%
is a very very high rate of open access. It could do with being discussed more within the manuscript
e.g. relative to the overall (lower) rate of open access of all biomedical and life science research
articles. What does this signify about preprint authors / ‘preprinters’?

I can think of a couple of hypotheses:

a. preprinters are perhaps more likely to have grant-funded research subject to an open access
policy

b. perhaps preprinters are more publishing ‘savvy’ and want to achieve more impact/citations and
thus strive harder to ensure that the eventual journal-published version of their work is open
access (re�ected in being in PMCOA).

We appreciate the reviewer’s positive comments on our manuscript. The reviewer is corrected
that we did not realize that the �nding of 77% of preprint-published pairs being present in
PMCOA is a surprising discovery, and we thank this reviewer for bringing this to our attention.
We now include the following in our discussion section to emphasize this point:

https://github.com/greenelab/annorxiver/blob/master/FIGURE_DATA_SOURCE.md#figure-s6


If it were my choice I would cut the entire subsection ‘Document embeddings derived from bioRxiv
reveal �elds and sub�elds’. It is already known that document embeddings can reveal �elds and
sub�elds. Being ‘preprints’ or ‘biorxiv preprints’ rather than say published journal articles won’t
change that. I found this section very uninteresting and extremely un-novel. It is descriptive and
accurate, but in the context of an already long manuscript, I feel it is unnecessary.

We felt that this analysis also included other �ndings that were less obvious: namely the
principal components that separated �elds and the �nding that certain �elds like systems
biology were spread across certain components that distinguished quantitative systems
biology from cellular systems biology papers. We think that this lays the groundwork for a
number of future research e�orts. However, we agree with the reviewer that this manuscript
does present a broad examination of the full text content of bioRxiv and is somewhat lengthy,
so we did move this section into the supplement.

Aside from the manuscript, I have some brief comments on the actual web application.

I tried some palaeontology preprints (it’s a �eld i’m very familiar with). The results were rather
mixed. e.g. for https://greenelab.github.io/preprint-similarity-search/?
doi=10.1101/2020.12.10.406678 (“The �rst dinosaur egg remains a mystery”), the most similar
paper recommendations were excellent. However, the most similar journals suggested were
surprisingly poor - many of these could obviously at a glance never publish this preprint (dinosaurs
are not plants!) e.g. American Journal of Botany, World Archaeology, Journal of Phycology, The
Holocene, Botanical Journal of the Linnean Society. Linnean Society of London

But I realise that PMCOA isn’t exactly great training date for interpreting palaeontology articles –
fringe content from PMC’s perspective(?)

We agree that using PMCOA as a training set will limit the �elds to which the website can be
applied. We felt that PMCOA was likely to be appropriate for much bioRxiv and medRxiv
content, which are the servers our tool supports. We have also implemented a system to
automatically update to bring in new PMCOA papers. If PMCOA begins to include more journals
that publish articles in these �elds or author-contributed manuscripts in these �elds, then the
tool would be more likely to identify appropriate matches.

+ Over 77% of bioRxiv preprints with a corresponding publication in our 
snapshot were successfully detected within Pubmed Central’s Open 
Access Corpus (PMCOA).  

+ This suggests that most work from groups participating in the preprint 
ecosystem is now available in final form for literature mining and 
other applications.



Speci�c comments:

1.) https://hypothes.is/a/1ODs5NLbEeuhnEPjCpUFpA

I think this needs to be made more speci�c as [25] analysed a few di�erent things.

Your statement here is true with respect to their analysis of abstract text “Over 50% of abstracts
had changes that minorly altered, strengthened, or softened the main conclusions”

BUT

it is not true with respect to the panels and tables analysis in [25]:

“over 70% of 162 published preprints were classi�ed with “no change” or super�cial
rearrangements to panels and 163 tables, con�rming the previous conclusion”

thus perhaps you should consider writing something like:

an analysis of preprints posted at the beginning of 2020 revealed that over 50% underwent minor
changes in the abstract text as they were published, but over 70% had ‘no change’ or only
super�cial rearrangements to panels and tables [25].

We agree with the reviewer that the proposed phrasing is better. We now write:

2.) https://hypothes.is/a/djNirNLcEeu2YxNM5WBxvA

but to clarify, you did remove these from the analysis, right? It would just be good to clarify that.
They are easy to identify and should just be removed. I can’t see how they would add anything but
noise to this analysis. What is the total number of preprints after withdrawn preprints are removed
from the sample?

In the version of the manuscript that the reviewer saw, we did not remove these preprints
from our analysis as we felt their impact would be minimal. Based on the reviewer’s
comments, we have now rerun all of the analyses with these withdrawn articles removed. This
did not lead to substantive changes in the article or �gures, but we agree it was the most
rigorous analysis and are happy that the reviewer brought up this point.

- Preprint repositories by definition do not perform in-depth peer review, 
which can result in posted preprints containing inconsistent results 
or conclusions [...]; however, an analysis of preprints posted at 
the beginning of 2020 revealed that most underwent minor changes as 
they were published [...].  
 

+ Preprint repositories by definition do not perform in-depth peer review, 
which can result in posted preprints containing inconsistent results 
or conclusions [...]; however, an analysis of preprints posted at 
the beginning of 2020 revealed that over 50% underwent minor changes 
in the abstract text as they were published, but over 70% did not 
change or only had simple rearrangements to panels and tables [...].



3.) https://hypothes.is/a/bmdkpNLeEeuZ0k8oLqyeWQ

actually, there need not necessarily be an embargo period. Many publishers now o�er a zero-day
embargo so that the author accepted manuscript can be deposited either at acceptance (before
even journal publication!) or on the day of journal publication. Even if the journal normally tries to
embargo the work, you can see some full text author manuscripts become immediately available
well before the journal would normally permit them ‘out’ thanks to the Plan S Rights Retention
Strategy e.g. this one here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610590/

So what you should really say here is that full text works appear in PMC as either accepted author
manuscripts (green open access) or via open access publishing at the journal (gold open access).

BTW, I resent calling it a ‘closed access’ [article?] if the accepted manuscript is fully freely available –
that would seem to give undue primacy to the journal published version. It’s an article with
di�erent versions - one freely accessible at a repository e.g. PMC, without publisher branding and
another behind a paywall at the publisher website with publisher branding

We agree that ‘closed access’ was imprecise phrasing. We have updated this section in our
manuscript.

4.) https://hypothes.is/a/-v_PbtLeEeu8Rw8afgzT5g

presuming a journal allows individual articles to be published with a CC BY licence under a so-
called ‘hybrid-OA’ option, can a journal really NOT participate for those CC BY licenced articles? If
biomedically relevant and CC BY licensed surely PMC takes that content at the article level and thus
its debatable as to whether journals really have the power to actually 100% not participate.

We agree with the reviewer that this is an important distinction and have adjusted our text:

- As there were very few withdrawn preprints, we did not treat these as a 
special case.  
 

+ We encountered a total of 72 withdrawn preprints within our snapshot.  
+ After removal, we were left with 97,951 preprints for our downstream 

analyses.

- PMC articles can be closed access ones from research funded by the NIH 
appearing after an embargo period or be published under Gold Open 
Access [...] publishing schemes.  
 

+ Articles appear in PMC as either accepted author manuscripts (Green Open 
Access) or via open access publishing at the journal (Gold Open 
Access [...]).



5.) https://hypothes.is/a/vekhYNLfEeuxGm9i6MkLqw it’s a real pity you chose not to compare
preprints to author manuscripts. As your results demonstrated, lots of the word changes were just
journal-style related e.g. “�gure” -> “�g.” . An analysis of just preprints matched to author
manuscripts would get more closely and cleanly to what the textual di�erence between pre-peer-
review and post-peer-review (without minor stylistic changes).

We agree that contrasting di�erences in bioRxiv to author-supplied vs journal-supplied
manuscripts have the potential to remove some of the journal-related stylistic changes
revealed in our token analysis. We felt that this would be an interesting manuscript in its own
right and that we would not be able to give it an appropriate treatment within this manuscript.
However, we leave this analysis for future endeavors.

6.) https://hypothes.is/a/YkqPKNLgEeucPGc1_W-jzA

minor typo: tagging surely

Thank you for pointing this out. We updated text to �x this typo.

- Individual journals have the option to fully participate in submitting 
articles to PMC, selectively participate sending only a few papers 
to PMC, only submit papers according to NIH's public access policy 
[...], or not participate at all.  
 

+ Individual journals have the option to fully participate in submitting 
articles to PMC, selectively participate sending only a few papers 
to PMC, only submit papers according to NIH's public access policy 
[...], or not participate at all; however, individual articles 
published with the CC BY license may be incorporated.

- This collection contains over 1.8 million articles where 1.5 million of 
those articles have undergone manual entity tagged by library 
scientists [...].  
 

+ This collection contains over 1.8 million articles where 1.5 million of 
those articles have undergone manual entity tagging by library 
scientists [...].



7.) https://hypothes.is/a/Bsv68tLkEeugHEfCZMUGag From the perspective of a person (me!)
interested in open access to (‘�nal’) peer-reviewed research outputs this is a super interesting
result in itself, which should perhaps be remarked upon more in this manuscript.

It implies that over 77% (17,952/23,271) of biomedical preprints that are detectably linked to a
journal published paper, that subsequent journal published paper became open access in the
PMCOA corpus (regardless of speci�c means/route). That’s great news. The subset of works from
biomedical researchers that do preprinting have a much higher level of open access (to the
eventual journal published version) than biomedical research overall (including works that don’t
have a preprint version)

See �gure 3a from ‘Open access levels: a quantitative exploration using Web of Science and oaDOI
data’ by Bosman and Kramer for a comparator looking at OA levels in biomedical and life science
papers https://peerj.com/preprints/3520.pdf even in the ‘best’ OA performing sub�eld (Cell Biology)
it doesnt reach 70%. 30% to 50% is more typical albeit looking at 2016 publications.

Put another way, we only ‘lose’ 23% of biomedical preprinted research to paywalled journals that
do not allow a copy of the work to be made full text available in the PMCOA corpus, in reasonable
time**. And in those cases we still have access to the preprint

** with no doubt many other caveats such as cases where the author could do it without help from
the journal, but does not for some unknown reason

We appreciate that the reviewer pointed out this interesting �nding in our results that we had
missed, and we have updated our discussion accordingly.

8.) https://hypothes.is/a/aWmt3tLlEeuh3M-Ku8ThvQ

To be clear 326 stopwords is the default setting?

Interestingly ‘ca’ is one of those 326 stopwords. I would have thought that one might actually be
signi�cant in a life sciences context e.g. calcium channels “Ca2+”

We used the 326 stopwords provided by default. We agree that the stopwords are not precisely
tuned for life sciences research. We have adjusted our text to say:

- The majority of research involving bioRxiv focuses on the metadata of 
preprints; however, the language contained within these preprints 
has not previously been systematically examined.  
 

+ Over 77% of bioRxiv preprints with a corresponding publication in our 
snapshot were successfully detected within Pubmed Central's Open 
Access Corpus (PMCOA).  

+ This suggests that most work from groups participating in the preprint 
ecosystem is now available in final form for literature mining and 
other applications.  

+ Most research on bioRxiv preprints has examined their metadata; we examine 
the text content as well.



9.) https://hypothes.is/a/dkIurtLmEeuqkU-qTN4dtg

I’m sure you’ve got this in the github, but just to make the manuscript more readily understandable
without digging around in github, do you think you could provide as a supplementary �le a list of
those 100 most frequently occurring tokens, so that people can get a better feel for what the data
is here?

We agree with the reviewer that this is a convenient table to have at hand. This is now
Supplementary Table 5.

10.) https://hypothes.is/a/-2AU8tLmEeu6swvY4jN5Mw

hmmm… not a problem of this manuscript, but that’s really not good enough from bioRxiv is it?
Change one word of a long and complex title and suddenly ‘oh, we can’t do it’. A comment to
suggest that bioRxiv could do better would be fun, no(?) i.e. look at author names AND title and if
both are similar enough, then do auto-linking.

oh okay, you did actually do that. Nice :)

We are glad that you liked our document matching solution.

11.) https://hypothes.is/a/dhGbgNLnEeuYkkfUNqKwgA

I don’t suppose you could possibly be precise about this rather than just ‘a limited number’? Is it 5,
50, or 500?

We agree that this line is vague and have updated our text to be more explicit.

- We used spaCy's "en_core_web_sm" model [@spacy2] (version 2.2.3) to 
preprocess all corpora and filter out 326 spaCy-provided stopwords.  
 

+ We used spaCy's "en_core_web_sm" model [@spacy2] (version 2.2.3) to 
preprocess all corpora and filter out 326 stopwords using spaCy's 
default settings.

- There were a limited number of cases in which authors appeared to post 
preprints after the publication date, which results in preprints 
receiving a negative time difference, as previously reported [...]  
 

+ We encountered 123 cases where the preprint posting date was subsequent to 
the publication date, resulting in a negative time difference, as 
previously reported [...].



12.) https://hypothes.is/a/DzrzGtLtEeuJlcdOlUfUBA

I’m surprised to see no citation given to JANE: https://jane.biosemantics.org/

https://academic.oup.com/bioinformatics/article/24/5/727/202224

reviewed in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300233/

The ‘�nd journals’ functionality of JANE appears somewhat similar to the discovering similar
journals functionality here.

Thank you for pointing this citation out. We have incorporated it into our manuscript.

13.) https://hypothes.is/a/eJ7-DtLpEeuh0A8OL8WAWw

This is the kind of journal-fa� di�erence that I hypothesise would not be visible or less visible if one
did an analysis of preprints vs author manuscripts.

There is change but is change from �gure to ‘�g.’ to suit journal style actually helpful/valuable? In
my opinion it is not!

We recognize the limitation of our design choice and agree it would be interesting to compare
journal-supplied vs author-supplied manuscripts in a future study.

14.) https://hypothes.is/a/-ixA_NLqEeuv6YviR-lI0A

I would cut this entire subsection from the manuscript to make it shorter (or relegate it to a
supplementary section).

Don’t we already know that if one uses full texts we can determine the sub�eld of the paper? It’s
not that interesting in my opinion and not relevant to the main hypotheses of the paper –
comparing between preprints and the journal published version.

We believe this section is needed to describe the landscape of the bioRxiv corpus; however, we
agree the manuscript is long and has many results, so we moved this section to the
supplement.

- We developed a web application that places any bioRxiv or medRxiv preprint 
into the overall document landscape and identifies similar papers 
and journals.  
 

+ We developed a web application that places any bioRxiv or medRxiv preprint 
into the overall document landscape and identifies topically similar 
papers and journals (similar to [..]).



15.) https://hypothes.is/a/V2wj3NLqEeuZ9idQ44yS4Q

adjusting for recency? i.e. not sampling 2019 preprints? in �gure C the line indicates (if I’m
interpreting correctly) that overall only 46.55% are published but that’s because it includes very
recent preprints that haven’t had time to be journal published yet. Just be explicit that you are
adjusting for recency (i.e. excluding 2019 and newer preprints) when you say that most preprints
are eventually published.

Initially, we incorporated all preprints (2013 to early 2020) when calculating the overall
proportion of preprints published. We agree that adjusting for recency is a better approach;
however, we need to incorporate all preprints to have a fair comparison against Abdill et
al. estimate. The authors’ estimate incorporated all preprints at the time of their study.
Therefore, we updated our analysis to include two proportion estimates. Our �rst estimate
included all preprints posted onto bioRxiv, while the second estimate adjusts for recency.
These two estimates are found in Figure 2 in our updated manuscript (reproduced below),
where the �rst estimate is the solid green line and our second estimate is the dashed line.

updated overall proportion calculation

16.) https://hypothes.is/a/N8cKltLrEeuZ-iPc5lrP5g

text changes relative to the journal published version? You might want to make that more explicit.
Text changes alone is not adequately speci�c in my opinion.

We agree that text changes were a bit vague and have updated the title accordingly.

17.) https://hypothes.is/a/z4r5ztLgEeupmPfOPmlVbw think this is insu�cient information.

It should be more clearly highlighted that the NYTAC is proprietary data and it may require a fee of
$150-300 to be paid to access, if a non-member of the Linguistic Data Consortium. To say merely “is
available upon request” and nothing else is not quite true to my eyes - please warn that it may
require payment to access, depending on one’s institutional a�liation (or lack thereof).

- Preprints with more versions or more text changes took longer to publish 
 

+ Preprints with more versions or more text changes relative to their 
published counterpart took longer to publish



We agree and have updated this text to make the fees accessing NYTAC more apparent.

is using a proprietary data set that charges for access congruent with the PLOS data availability
policy?

See: “Please note, if data have been obtained from a third-party source, we require that other
researchers would be able to access the data set in the same manner as the authors”
https://journals.plos.org/plosone/s/data-availability despite that URL indicating just PLOS ONE, the
policy applies to all PLOS journals, unless otherwise noted.

We believe that using the NYTAC dataset does not violate PLOS’s data availability policy. We
accessed the dataset in accordance with this policy.

Reviewer #2
Overall, I enjoyed this manuscript for o�ering a way to quantify the transition of preprints to
manuscripts within the biological sciences. Further, the authors develop an approach that could
also more generally be useful for classifying biomedical literature, and they even provide as an
example a web-based program to �nd potential publication avenues.

We appreciate the reviewer’s positive sentiment about our work.

The methodological approach of the authors is quite unexpected. While I do not see a fundamental
�aw in their approach, I would anticipate it to be biased toward the most frequent phrases. When
performing computational research there is a risk to pursue analyses through well-intended
“improvements” or “customizations” whenever the approach does not seem to yield the expected
outcome. As some people could be tempted to interpret parts of the analysis of the authors as
warning �ags for above having happened, I would recommend adding some additional control
analyses and explicit statements about their chosen rationales.

Particularly, I would be very curious about the discussion, or main text commenting on why the
authors created a custom scheme of classifying documents and their similarity based on vectors of
words instead of using existing approaches that provide vectors of documents - including doc2vec
that is included in the software package that the authors used for word2vec. Do the results change
according to the approach?

We agree with the reviewer that there are a number of possible approaches to both explore
the linguistic landscape of bioRxiv and to predict the ultimate publication venue of preprints.
Our �rst goal was to examine the linguistic landscape, so we prioritized strategies that led to

- Access to the New York Times Annotated Corpus (NYTAC) is available upon 
request with the Linguistic Data Consortium at 
[https://catalog.ldc.upenn.edu/LDC2008T19]
(https://catalog.ldc.upenn.edu/LDC2008T19).  
 

+ New York Times Annotated Corpus (NYTAC) can be accessed from the 
Linguistic Data Consortium at 
[https://catalog.ldc.upenn.edu/LDC2008T19]
(https://catalog.ldc.upenn.edu/LDC2008T19) where there may be a 
\$150 to \$300 fee depending on membership status.



interpretable embedding spaces. Our primary strategy was to use word embeddings, which we
could use to explore topics and language. We combined those same word embeddings to
produce document embeddings as the average of the word embeddings. This lets us use the
same underlying embeddings through the manuscript from the exploration of language
through the journal prediction. We also agree with the reviewer that Doc2Vec would be likely
to produce embeddings that would improve performance on the prediction task. 
For this revision, we directly compared both methods for their interpretability and predictive
performance. We �nd that the Word2Vec model’s �rst principal component (shown below) was
more interpretable than the one from the Doc2Vec model (also below). On the other hand, we
�nd that the Doc2Vec model’s predictive accuracy is better for the journal classi�cation task
(also below). On balance, we think including multiple embedding models within this paper,
which aims to characterize the linguistic landscape of bioRxiv, would be confusing. For this
revision, we have elected to retain the Word2Vec model. We debated changing the journal
prediction server and results to use Doc2Vec, but also considering the feedback from reviewer
#1 about the complexity of the paper decided against at this time. We could easily imagine an
improvement to the server in the future that moves to Doc2Vec.

Word2Vec 1st Prinicpal Component WordCloud 



Doc2Vec 1st Prinicpal Component WordCloud 



Doc2vec vs Word2vec in Journal Recommendations 

Further, word2vec often seems to work even better when �rst trained on a larger corpus before
then being applied or transferred to more specialized corpora. Personally, I also made this
experience when following an example tutorial provided by the creators of the package that the
authors used - which too suggests starting with existing pre-trained models. While the more
restricted training done by the authors might have reduced the sensitivity of their approach (…
which would likely only strengthen their claims), I would be curious whether there was an
additional rationale for avoiding the former strategy that might be missed by readers (e.g.:
di�erent meanings such as “abstract” that has di�erent meanings for scientists and non-
scientists?).

We did consider using a pretraining step, but we were worried that then it might be hard to
di�erentiate the e�ect of pretraining from the text content of bioRxiv. Since our goal was to
explore the linguistic landscape of bioRxiv itself, we elected not to do this. We agree with the
reviewer that if the goal is to enhance the predictive performance of the similarity search
webserver, this would be a good step to take. As with above, we may consider this in a future
iteration of the server, but at this point we want to make sure the work continues to
characterize the linguistic landscape of bioRxiv.

Likewise, I’m wondering why the authors used a Euclidean distance for word embeddings instead
of a Cosine similarity (which if I recall correctly would also be default in the similarity module of the
package which the authors used). Cosine similarity should also allow the authors to make
statements about the similarity of words without imposing assumptions on similar text lengths or
usage frequencies.

We used Euclidean distance because it satis�ed the triangle inequality, which let us use the
sklearn implementation of k-d tree for preprint similarity search. This allowed us to perform
search e�ciently with a minimum of development time, and also provided a framework that



we could use to shard the search across nodes in the event that we needed to further
accelerate performance. We didn’t �nd the distance metric to be a substantial driver of
performance: preprints and their published counterparts have signi�cantly lower distances
regardless of the distance metric used (comparison �gure provided below).

Distance comparison

Distance comparison

Similarly, I was wondering how the “journal-based” approach, which the authors mention brie�y
against the in�uence of high publication frequency journals, was implemented. Further, if it could
have been avoided by avoiding the Euclidean space.

The mapping of similarity seems to be based on individual pairs of text and as such it would seem
vulnerable of shifting distributions (e.g.: if published articles were somewhat di�erent from
preprints, as implied in Figure 1A). I would suspect that the authors would be able to improve their
performance even further by doing global matching between many pairs (… again see their
adherence to a weaker approach as something that ultimately strengthens their �ndings). Again, a
comment on the rationale of their chosen approach could convey additional non-evident
considerations.

While a more optimal distance metric could make some di�erence in performance, it wouldn’t
substantially change the issue of the background frequency whereby some mega journals have
published orders of magnitude more manuscripts than others. We feel that the two
approaches together (nearest publications, nearest centroids) provide a reasonable solution
that can be e�ectively integrated into a web interface. The reviewer’s additional comment
about implementing an explicit adjustment for the distributional shift is quite insightful and
would likely be a path to improved performance. We could imagine using something like
Orthogonal Procrustes to align the preprint-publication vector spaces before performing
search. We also recently added the capability to automatically update the search indices,
which makes implementing this more challenging (we’d want to check the alignments each
time), so we didn’t implement this at this time but we agree with the reviewer that this is an
important path to explore for improved performance in the future.

I love the web application!

We are happy you like the application.

No statistics are given for the enrichments in Figure 1B-E.

We report each token with a 95% con�dence interval (CI). The underlying frequency counts are
su�ciently large that the con�dence intervals are di�cult to discern on the plot. We have
adjusted our plot style to make the con�dence intervals more apparent.

I would welcome a supplemental analysis, that removes single letters and special characters from
the analysis of Figure 1B-E as they might change the baseline.

We have added this analysis to our supplement (Supplemental Figures S3 and S4). We
reproduced these �gures below.



BioRxiv vs Pubmed Central Supplemental Figure S3 

Preprints vs their Published Counterparts Supplemental Figure S4 

The word cloud of Figure 2B, C is somewhat nice as it shows the main words. However, this
information could also be conveyed in the text. Would personally favor to quantitatively see
loadings of �rst few principal components for di�erent terms.

We have provided a table in our supplemental section (Supplemental Table 3 and 4). We also
provide these tables below:

Supplementary Table S1: Top and bottom �ve cosine simularity scores between tokens and the PC1
axis.

Cosine Simularity (PC1, word) word

0.6399154807185836 empirical

0.5995356000266072 estimates

0.5918321530159384 choice

0.5905550757923625 statistics

0.5832932491448216 performance



Cosine Simularity (PC1, word) word

0.5803836474390357 accuracy

0.5757250459195589 weighting

0.5753027342288192 estimation

0.5730092178610916 uncertainty

0.5720493442813257 task

-0.4484093198386865 abrogated

-0.4490583645152233 transfected

-0.4500847285921068 incubating

-0.4531550791501111 inhibited

-0.4585422153514687 co-incubated

-0.4774721756292901 pre-incubated

-0.4793057689825842 overexpressing

-0.4839313193713342 puri�ed

-0.4869885872803974 incubated

-0.5040798110023075 cultured

Supplementary Table S2: Top and bottom �ve cosine simularity scores between tokens and the PC2
axis.

Cosine Simularity (PC2, word) word

0.65930201597598 genomic

0.6333515216782134 genome

0.5974018685580009 gene

0.5796531207938461 genomes

0.5353687686155728 annotation

0.5310140161149529 sequencing

0.5197350376908197 sequencesM.

0.5181781615670665 genome,

0.5168781637087506 bioinformatic

0.513853407439108 WGS

-0.4589201401582101 duration

-0.4690482252758019 stimuli

-0.4712875761979691 amplitudes

-0.4772723570301678 contralateral

-0.4813219679071856 stimulation:

-0.4946709932017581 delay

-0.5111990014804086 stimulus



Cosine Simularity (PC2, word) word

-0.5251288188682695 amplitude

-0.543586881182879 stimulation

-0.5467022203294039 evoked

The de�nition of “True matches” could be more explicit in within the main text as the preceding
�gure 3A could for some people set up a di�erent anticipation.

We agree this term is too vague, and we have updated the text to be more explicit.

The association given in Figure 4A seems to mainly stem from a few papers with large distances.
Would an association be present when using the rank-based Spearman correlation instead of a
linear regression? Would, for visualization, a logarithmic relationship describe the data better than
a linear one?

This �gure depicts the median half-life publication time for each preprint category within
bioRxiv, so we don’t think that it is driven by outliers within categories. We have adjusted the
�gure legend to more clearly note what we plotted.

I believe that the analysis of Figure 4 B is quite clever as it would seem to address the thinkable
concern of preprints with no delay and changes mainly stemming from those manuscripts that
were already essentially accepted by manuscripts at the time of posting.

We are glad the reviewer found our analysis insightful.

The analysis remarks that for the “Preprints in Motion Collection” the relationship between textual
distance and time to publication disappears, and supports this through Figure 6E. However, the
background trend in �gure 6E includes publications that have been published at a time that
exceeds a year. Hence a more faithful comparison would be to censor the background data by a
distribution of durations that would correspond to the distribution of durations that would be
possible for the “Preprint in Motions Collection” (taking distribution corresponding to interval
between their dates on bioRxiv and the time at which authors assessed whether manuscripts were
published).

This point is very interesting! The preprints in motion selection included preprints that were
both posted within a speci�c time interval and then subsequently published. We think the best
comparison set would be with preprints posted on the same dates as preprint in motion
preprints, but where the analysis is conducted on the set after enough years have passed for
those that will be published to have been published. Since we don’t have this set, we did
conduct the analysis proposed by the reviewer. The results of this analysis are available in
Supplemental Figure S6 (reproduced below).

- Approximately 98% of our 200 pairs with an embedding distance in the 0-
25th and 25th-50th percentile bins were scored as true matches 
(Figure 3B).  
 

+ Approximately 98% of our 200 pairs with an embedding distance in the 0-
25th and 25th-50th percentile bins were successfully matched with 
their published counterpart (Figure 2B)



Adjusct Background Analysis

Other:

Labels within �gures could often be increased in size to improve readability.

We have updated the size of our labels for this manuscript.

The methods section brie�y comments on some ambiguous cases for the matching. Would these
cases be the result of modi�cations that defy a 1:1 mapping, e.g.: multiple stories getting fused, or
one story getting split?

Out of our small set of disagreements, we encountered a variety of reasons for annotation
mismatches. Some of these cases involved entirely di�erent papers, which are clearly false
positives. Other cases involved title, abstract or main text changes, while the remaining cases
consisted of papers sharing similar research topics. We provide a table of these disagreements
below along with short description about each pair.

biorxiv_doi_url pmcid_url Description

https://doi.org/10.1101/413450 https://www.ncbi.nlm.nih.gov/pmc/PMC2967545
Entirely
di�erent
papers.

https://doi.org/10.1101/776930 https://www.ncbi.nlm.nih.gov/pmc/PMC6210049
Entirely
di�erent
papers.

https://doi.org/10.1101/2020.01.13.905521 https://www.ncbi.nlm.nih.gov/pmc/PMC4171638
Text changes
but same
paper.

https://doi.org/10.1101/352963 https://www.ncbi.nlm.nih.gov/pmc/PMC6116183
Text changes
but same
paper.

https://doi.org/10.1101/513002 https://www.ncbi.nlm.nih.gov/pmc/PMC3545240

Similar aspects
of research
(liver studies)
but di�erent
papers.



biorxiv_doi_url pmcid_url Description

https://doi.org/10.1101/680843 https://www.ncbi.nlm.nih.gov/pmc/PMC6379322

Similar aspects
of research
(taxonomy
studies) but
di�erent
papers.

https://doi.org/10.1101/074450 https://www.ncbi.nlm.nih.gov/pmc/PMC5776756

Signi�cant text
changes but
arguably same
paper.

https://doi.org/10.1101/530758 https://www.ncbi.nlm.nih.gov/pmc/PMC6663035
Signi�cant text
changes but
same paper.

The results of Figure 2A could possibly be strengthened by avoiding Principal Components and
replacing them by UMAP projects to account for non-linearity.

We chose to use PCA for �gure 2A as our goal was to visually highlight the concepts captured
by our generated principal components. We did also perform a UMAP embedding, which we
included in this notebook but not the manuscript itself.

Although peripheral to the current manuscript, their approach and data would also seem capable
to providing an update-able map of the biomedical sciences, by applying their approach of Figure 2
to the PMC corpus data which the authors access too. Such a map could be interesting for those
trying to obtain an overview about biology. In case that the authors do not hold plans to publish
this elsewhere, and in case that it would be less than a day of work, I would recommend adding
such a map to the supplement or as a web service.

Our web application provides 2D visualization of PMC’s open-access corpus. This visualization
uses SAUCIE, an autoencoder designed for RNA-seq, instead of UMAP or PCA to generate the
landscape. We also constructed an auto-updater pipeline for this tool, incorporating new
papers into our website and visualization every month. We think that the map is now in place
in our server, and that others could produce their own map using either our API or the
underlying SAUCIE models. Code to train our SAUCIE model can be found in this notebook and
our fully trained model can be found using this link.

Are the few publications in Figure 2A, which lie outside of the space that is generally occupied by
their respective article categories, somewhat di�erent when doing a super�cial manual inspection
(e.g.: misclassi�ed by authors, or interdisciplinary research)

We sampled a select number of preprints from the neuroscience and bioinformatic category
that were closer to the left side of the �gure (PC1 <= -2.5 and -2 < PC2 < 2). We found that these
outliers mainly consisted of interdisciplinary research (e.g., a bioinformatic paper analyzing
�uorescence micrographs or a cell biology approach used to explore a neuroscience concept).
We provide a table below of preprint DOIs that fall into this situation.

https://github.com/greenelab/annorxiver/blob/b120488de2c197d93072678f80fce68d11d9e08d/biorxiv/word_vector_experiment/02_biorxiv_visualize_embeddings.ipynb
https://github.com/greenelab/annorxiver/blob/master/pmc/journal_recommendation/03_journal_recommendation_figure_generator.ipynb
https://github.com/greenelab/preprint-similarity-search/tree/master/server/saucie_model


PCA plot

doi document category

10.1101/075440 bioinformatics

10.1101/806216 bioinformatics

10.1101/696625 bioinformatics

10.1101/835181 bioinformatics

10.1101/583187 bioinformatics

10.1101/610196 neuroscience

10.1101/2020.01.08.898080 neuroscience

10.1101/664557 neuroscience

10.1101/655498 neuroscience

10.1101/244111 neuroscience

Adding a few words to “examining the top �ve and bottom �ve preprints” could avoid
misunderstanding (e.g.: while I suspect that it is the position in Figure 2A, I was �rst thinking about
the most/least successful/downloaded…)

We have updated the text to be more explicit.

- Examining the top five and bottom five preprints within the systems 
biology field reinforces PC1's dichotomous theme (Table ...).  
 

+ Examining the top five highest-scoring and bottom five lowest-scoring 
systems biology preprints along PC1 reinforces its dichotomous theme 
(Supplementary Table ...).



The vector representation of words and documents should allow the authors to quantify shifts that
appear between preprints and published manuscripts. Though not necessary from my perspective,
many interesting analyses could be done in vector space (e.g.: does language get more positive, or
start to refer to more established concepts…?). Maybe there is something small that could be done.
Alternatively, the discussion could possibly be extended to demonstrate the implications of vector
space, and thus their own work, for future research into preprints and peer review.

Thank you for pointing out potential extensions to our vector space. We incorporated these
suggestions into our discussion/conclusion section.

Along above, the discussion could be extended toward prior uses of Word2vec in the studies of
science, such as Tshitoyan et al. Nature 2019.

We have added this citation into our discussion.

Repeating the link to the web app in the main text would be convenient.

We have updated the text to include the web app link throughout our website section.

Seeing Figure 6D and 6E, I would enjoy the authors showing or discussing more explicitly, whether
textual di�erences increase with the number of revisions (and/or if there were some more complex
changes such as reversions to earlier versions).

We agree with the reviewer that this would be interesting to examine. We performed a linear
regression analysis to examine relationships between preprint version counts and the amount
of change using all preprint-published pairs within bioRxiv. We found a small positive slope
between version count and document distance (see below), but given the caveats involved
with respect to small sample size at the extremes we elected not to include this analysis in the
revised manuscript.

+ This embedding space could also be used to quantify sentiment trends or 
other linguistic features.  

+ Furthermore, methodologies for uncovering latent scientific knowledge 
[...] may be applicable in this embedding space.

+ Furthermore, methodologies for uncovering latent scientific knowledge 
[...] may be applicable in this embedding space.



Version Count vs Document distance Linear regression

Reviewer #3
This study asks an important question: (how) do preprints change between their initial release on a
preprint server and their eventual publication in a peer-reviewed journal? While the analysis of the
linguistic changes doesn’t reveal anything particularly exciting (mostly typesetting and references
to supplementary information included in response to reviewer requests), this is an incredibly
useful result in demonstrating that preprints are typically of high quality, which has broad
implications for how researchers and their work are assessed in career, funding, and publishing
decisions. The authors have developed some very promising deliverables based on document
embeddings that should be broadly applicable to readers, authors, journal editors, and other
stakeholders navigating the complex landscape of preprinted and published literature.

We appreciate the reviewer’s positive comments on the value of our manuscript. We agree that
the linguistic changes aren’t particularly exciting and with the reviewer’s sentiment that that
�nding, in itself, is exciting.



Major Comments:

The method for discovering unannotated preprint-publication relationships is very neat, but I
imagine it’s rather unwieldy to match a novel publication against the full-text bioRxiv corpus in
downstream applications (e.g., bioRxiv’s automation)–could this be optimized by reducing the
search space to preprints that share some or all of the same authors, within a reasonable date
range, and/or only considering paper/preprint metadata (e.g., abstract, title, references)? Such an
approach might also enable annotation of preprints that are eventually published as non-OA peer
reviewed articles for which such metadata are available.

We investigated this based on the reviewer’s question. Our results suggest that it is likely to be
feasible to identify preprint-published pairs using abstracts alone. We generated document
embeddings using solely abstracts and calculated distances between known preprint-
published pairs and preprints with a randomly sampled article from the same journal. We
found that the ranking by abstract distances was slightly better than full text (�gure below) for
matching preprints with their published pair. This indicates that abstracts can be used to
establish preprint and published links, and while the evidence is relatively weak (as the
di�erence between full text and abstract is small) it suggests that perhaps abstracts undergo
less change than full text.

Abstracts vs Full Text



Section “Building Classi�ers to Detect Linguistically Similar Journal Venues and Published Articles”:

“Speci�c journals publish articles in a focused topic area, while others publish articles that cover
many topics. Likewise, some journals have a publication rate of at most hundreds of papers per
year, while others publish at a rate of at least ten thousand papers per year. Accounting for these
characteristics, we designed two approaches - one centered on manuscripts and another centered
on journals.” << this could use some unpacking and/or reorganizing of details found later in this
section–as I understand it, the variation in journals’ topical breadth motivates the development of a
manuscript-focused classi�er (so that topically similar papers appearing in generalist journals do
not get obscured) and the variation in journals’ publication rates motivates a journal-focused
classi�er (so that high-output journals do not overwhelm more selective or less popular journals).

We agree with the reviewer that this section was unduly dense, and we have revised the
manuscript to more clearly unpack this explanation.

I’m also curious how often these two classi�ers agree–are the top matching papers typically found
in the top matching journals? In cases where the two classi�ers tend to disagree, are there any
common characteristics of the preprints the application is trying to classify?

We evaluated our classi�er agreement by calculating the overlap coe�cient, which is designed
to measure the overlap between two sets. We randomly sampled 1700 out of 20232 known
preprint-published pairs from our test dataset. We generated ten recommendations from our
centroid classi�er and ten unique journal recommendations from our paper-paper model for
every sampled pair (as the paper classi�er can return papers from the same journal, this
means we are examining ten or more manuscripts until we reach ten unique journals). This
resulted in an average overlap coe�cient of 0.21. Along with this calculation, we generated
baselines for each model. Our �rst baseline was designed for our journal centroid model. We
randomly sampled ten journals without replacement for each preprint-published pair. We
compared this random listing against our original journal centroid recommendation list and
found an average score of 0.0184. Our other baseline was designed for our paper-paper
classi�er. We randomly sampled without �ltering ten unique journals for each preprint-
published pair and compared this sample to the original paper-paper recommendation list.

+ Training models to identify which journal publishes similar articles is 
challenging as not all journals are the same.  

+ Some journals have a publication rate of at most hundreds of papers per 
year, while others publish at a rate of at least ten thousand papers 
per year.  

+ Furthermore, some journals focus on publishing articles within a 
concentrated topic area, while others cover many dispersive topics.  

+ Therefore, we designed two approaches to account for these 
characteristics.  

+ Our first approach focuses on articles that account for a journal's 
variation of publication topics.  

+ This approach allows for topically similar papers to be retrieved 
independently of their respective journal.  

+ Our second approach is centered on journals to account for varying 
publication rates.  

+ This approach allows more selective or less popular journals to have equal 
representation to their high publishing counterparts.



This baseline overlap coe�cient was 0.009. Our takeaway from this analysis is that both
approaches agree much more than they would due to random overlap, but the overlap
coe�cient remains modest. Because of the relatively large number of discrepancies between
the resulting sets, we were not able to identify a practical way to answer the characteristics of
preprints that led to di�erences vs common predictions.

Minor Comments (by section):

Introduction:

The references of text mining on biomedical corpora should include Desai et al (2018)
[https://www.biorxiv.org/content/10.1101/333922v1.abstract], which describes a similar
recommendation engine.

We agree and have added this reference.

Section “Comparing Corpora”:

Inconsistent formatting of “spaCy”

We updated our manuscript to make sure spaCy is formatted correctly.

De�ne “stopwords,” since many readers may be unfamiliar with this term

We added an explanation of “stopwords” to the manuscript.

Section “Constructing a Document Representation for Life Sciences Text”:

This switches back to using “words” instead of “tokens” as in the previous section

- Textual analysis uses linguistic, statistical, and machine learning 
techniques to analyze and extract information from text [...].  
 

+ Textual analysis uses linguistic, statistical, and machine learning 
techniques to analyze and extract information from text [...].

- Spacy is a lightweight and easy-to-use python package designed to 
preprocess and filter text [@spacy2].  
 

+ SpaCy is a lightweight and easy-to-use python package designed to 
preprocess and filter text [@spacy2].

+ All corpora contain multiple words that do not have any meaning (e.g. 
conjunctions, prepositions, etc.) or occur with a high frequency.  

+ These words are termed stopwords and are often removed to improve text 
processing pipelines.



Thank you for pointing out this inconsistency. We have carefully edited our manuscript to
make sure “tokens” was consistently used instead of “words”.

Section “Measuring Time Duration for Preprint Publication Process”:

Does this include the new preprint-publication pairs discovered in the previous section, or only
those annotated in the data provided by the bioRxiv API?

This section only contains preprints pairs that have been established before our document
matching approach.

Section “Preprints with more versions or more text changes took longer to publish”:

Fig. 4: can the longer publication times for scicomm/education papers (Fig 4a) be explained by a
tendency to go through more versions (Fig 4b)?

We investigated this. Unfortunately, we were not able to provide a detailed answer to this
question as most published articles in this category weren’t contained in Pubmed Central’s
Open Access Corpus (PMCOA). We do provide a table of preprints that have a matching
counterpart in PMCOA in our supplemental �les, which provides the ingredients for further
investigations.

It might be worthwhile to explore what happens post-publication to papers that go through more
preprint revisions and take longer to publish, as this could have practical implications for authors
as they decide when/if to submit/revise their preprints. Do these papers ultimately receive more
citations, end up in journals with higher impact factors, or receive more attention on social media?

We agree that this is an interesting question. We thought that this work would be outside the
scope of this manuscript, but we wanted to make it as easy as possible for this to be tackled in
the future. We provide a supplemental �le (published_preprints_information.xlsx) containing
preprints and corresponding publication to enable these future studies.

Section “Preprints with similar document embeddings share publication venues”:

From personal experience, converting bioRxiv PDFs to text sometimes introduces weird noise and
artifacts. Since bioRxiv and medRxiv both o�er full-text HTML for many (if not all?) articles, is it
possible to modify the application to use this cleaner data source?

At the time of submission, we recognized that using XML was better than solely relying on a
pdf parser. We have now updated the webserver to attempt to retrieve the XML version �rst,
then resort to the pdf parser if the XML version is unavailable.

Section “Contextualizing the Preprints in Motion Collection”:

Figure description for Fig 6E is mislabeled as D

We updated our text to �x this label mismatch.



There are several casually/awkwardly-worded or grammatically incorrect sentences throughout
that could use some �nesse:

Introduction:

“We hypothesize that preprints and biomedical text are pretty similar…”

Measuring Time Duration for Preprint Publication Process:

“Preprints that are published can take varying amounts of time to be published.”

“We accomplish this by �rst randomly sampled with replacement a pair of preprints…”

Building Classi�ers to Detect Linguistically Similar Journal Venues and Published Articles:

“Preprints are more likely to be published in journals that contained similar content to work in
question.”

Web Application for Discovering Similar Preprints and Journals:

“The application downloads a pdf version of any preprint hosted on the bioRxiv or medRxiv server
uses PyMuPDF to extract text from the downloaded pdf and feeds the extracted text into our
CBOW model to construct a document embedding representation.”

Preprints with more versions or more text changes took longer to publish:

“Each new version adds additional 51 days before a preprint is published.”

We have updated these sentences in the manuscript. We thank the reviewer for providing
these corrections.

- We hypothesize that preprints and biomedical text are pretty similar, 
especially when controlling for the differential uptake of preprints 
across fields.  
 

+ We hypothesize that preprints and biomedical text will appear to have 
similar characteristics, especially when controlling for the 
differential uptake of preprints across fields.

- Preprints that are published can take varying amounts of time to be 
published.  
 

+ Preprints can take varying amounts of time to be published.



- We accomplish this by first randomly sampled with replacement a pair of 
preprints from the Bioinformatics topic area as this was well 
represented within bioRxiv and contains a diverse set of research 
articles.  
 

+ We first randomly sampled with replacement a pair of preprints from the 
Bioinformatics topic area as this was well represented within 
bioRxiv and contains a diverse set of research articles.

- Preprints are more likely to be published in journals that contained 
similar content to work in question.  
 

+ Preprints are more likely to be published in journals that publish 
articles with similar content.

- The application downloads a pdf version of any preprint hosted on the 
bioRxiv or medRxiv server uses PyMuPDF [...] to extract text from 
the downloaded pdf and feeds the extracted text into our CBOW model 
to construct a document embedding representation.  
 

+ Our application attempts to download the full text xml version of any 
preprint hosted on the bioRxiv or medRxiv server and uses the lxml 
package (version num) to extract text.  

+ If the xml version isn't available our application defaults to downloading 
the pdf version and uses PyMuPDF [...] to extract text from the pdf.  

+ The extracted text is fed into our CBOW model to construct a document 
embedding representation.

- Each new version adds additional 51 days before a preprint is published. 
 

+ Every additional preprint version was associated with an increase of 51 
days before a preprint was published.


